Nonparametric Detection of Geometric Structures Over Networks

Nonparametric detection of the possible existence of an anomalous structure over a network is investigated. Nodes corresponding to the anomalous structure (if one exists) receive samples generated by a distribution <inline-formula> <tex-math notation="LaTeX">$q$</tex-math></inline-formula>, which is different from a distribution <inline-formula> <tex-math notation="LaTeX">$p$</tex-math></inline-formula> generating samples for other nodes. If an anomalous structure does not exist, all nodes receive samples generated by <inline-formula><tex-math notation="LaTeX">$p$ </tex-math></inline-formula>. It is assumed that the distributions <inline-formula><tex-math notation="LaTeX">$p$ </tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$q$</tex-math></inline-formula> are arbitrary and unknown. The goal is to design statistically consistent tests with probability of errors converging to zero as the network size becomes asymptotically large. Kernel-based tests are proposed based on maximum mean discrepancy, which measures the distance between mean embeddings of distributions into a reproducing kernel Hilbert space. Detection of an anomalous interval over a line network is first studied. Sufficient conditions on minimum and maximum sizes of candidate anomalous intervals are characterized in order to guarantee that the proposed test is consistent. It is also shown that certain necessary conditions must hold in order to guarantee that any test is universally consistent. Comparison of sufficient and necessary conditions yields that the proposed test is order-level optimal and nearly optimal respectively in terms of minimum and maximum sizes of candidate anomalous intervals. Generalization of the results to other networks is further developed. Numerical results are provided to demonstrate the performance of the proposed tests.

[1]  Wanqiu Liu,et al.  Lidar-Based bridge structure defect detection , 2011 .

[2]  Venkatesh Saligrama,et al.  Connected Sub-graph Detection , 2014, AISTATS.

[3]  Alessandro Rinaldo,et al.  Changepoint Detection over Graphs with the Spectral Scan Statistic , 2012, AISTATS.

[4]  Arthur Gretton,et al.  A Kernel Test of Goodness of Fit , 2016, ICML.

[5]  K. Fukumizu,et al.  Kernel Embeddings of Conditional Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical Models , 2013, IEEE Signal Process. Mag..

[6]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[7]  Xiaoming Huo,et al.  Near-optimal detection of geometric objects by fast multiscale methods , 2005, IEEE Transactions on Information Theory.

[8]  Le Song,et al.  Kernel Embeddings of Latent Tree Graphical Models , 2011, NIPS.

[9]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[10]  Bernhard Schölkopf,et al.  Kernel Measures of Conditional Dependence , 2007, NIPS.

[11]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[12]  Venkatesh Saligrama,et al.  Efficient Minimax Signal Detection on Graphs , 2014, NIPS.

[13]  J. Friedman,et al.  Multivariate generalizations of the Wald--Wolfowitz and Smirnov two-sample tests , 1979 .

[14]  Giovanni Vigna,et al.  Intrusion detection: a brief history and overview , 2002 .

[15]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[16]  I. Verdinelli,et al.  False Discovery Control for Random Fields , 2004 .

[17]  E. Candès,et al.  Searching for a trail of evidence in a maze , 2007, math/0701668.

[18]  Le Song,et al.  A unified kernel framework for nonparametric inference in graphical models ] Kernel Embeddings of Conditional Distributions , 2013 .

[19]  Meng Wang,et al.  Distribution-Free Detection of Structured Anomalies: Permutation and Rank-Based Scans , 2015, 1508.03002.

[20]  David Casasent,et al.  Detection filters and algorithm fusion for ATR , 1997, IEEE Trans. Image Process..

[21]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[22]  H. Vincent Poor,et al.  Nonparametric detection of an anomalous disk over a two-dimensional lattice network , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[23]  Luc Devroye,et al.  Combinatorial Testing Problems , 2009, 0908.3437.

[24]  P. Hall,et al.  Permutation tests for equality of distributions in high‐dimensional settings , 2002 .

[25]  Akshay Krishnamurthy,et al.  Detecting Activations over Graphs using Spanning Tree Wavelet Bases , 2012, AISTATS.

[26]  Bernhard Schölkopf,et al.  Characteristic Kernels on Groups and Semigroups , 2008, NIPS.

[27]  Zaïd Harchaoui,et al.  Testing for Homogeneity with Kernel Fisher Discriminant Analysis , 2007, NIPS.

[28]  E. Candès,et al.  Detection of an anomalous cluster in a network , 2010, 1001.3209.

[29]  G. Walther Optimal and fast detection of spatial clusters with scan statistics , 2010, 1002.4770.

[30]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[31]  Bernhard Schölkopf,et al.  Injective Hilbert Space Embeddings of Probability Measures , 2008, COLT.

[32]  Takafumi Kanamori,et al.  Density Ratio Estimation in Machine Learning , 2012 .

[33]  H. Vincent Poor,et al.  A kernel-based nonparametric test for anomaly detection over line networks , 2014, 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[34]  Le Song,et al.  Kernel Belief Propagation , 2011, AISTATS.

[35]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[36]  Arthur Gretton,et al.  Fast Two-Sample Testing with Analytic Representations of Probability Measures , 2015, NIPS.