Modeling Analysis of Bi-Layer Ni-(ZrO 2 ) x (Y 2 O 3 ) 1− x Anodes for Anode-Supported Intermediate Temperature-Solid Oxide Fuel Cells

Intermediate temperature-solid oxide fuel cell (IT-SOFC) Ni-(ZrO 2 ) x (Y 2 O 3 ) 1− x (Ni-YSZ) anodes formed by two layers, with different thicknesses and morphologies, offer the possibility of obtaining adequate electrochemical performance coupled to satisfactory mechanical properties. We investigate bi-layered Ni-YSZ anodes from a modeling point of view. The model includes reaction kinetics (Butler-Volmer equation), mass transport (Dusty-Gas model), and charge transport (Ohm’s law), and allows to gain an insight into the distribution of the electrochemical reaction within the electrode. Additionally, the model allows to evaluate a reciprocal overall electrode resistance 1 /R p ≈ 6 S·cm −2 for a bi-layer electrode formed by a 10 µm thick active layer (AL) composed of 0.25 µm radius Ni and YSZ particles (34% vol. Ni), coupled to a 700 µm thick support layer (SL) formed by 0.5 µm radius Ni and YSZ particles (50% vol. Ni), and operated at a temperature of 1023 K. Simulation results compare satisfactorily to literature experimental data. The model allows to investigate, in detail, the effect of morphological and geometric parameters on the various sources of losses, which is the first step for an optimized electrode design.

[1]  M. Sahini,et al.  Applications of Percolation Theory , 2023, Applied Mathematical Sciences.

[2]  S. Marinakis,et al.  Experimental and theoretical approaches , 2015 .

[3]  P. Costamagna,et al.  Model of infiltrated La 1-x Sr x Co 1-y Fe y O 3-δ cathodes for intermediate temperature solid oxide fuel cells , 2014 .

[4]  M. Ni,et al.  Investigation of the electrochemical active thickness of solid oxide fuel cell anode , 2014 .

[5]  M. D. Mat,et al.  Effects of anode fabrication parameters on the performance and redox behavior of solid oxide fuel cells , 2014 .

[6]  Fabio Rinaldi,et al.  Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system , 2014 .

[7]  Hans Peter Buchkremer,et al.  Sequential Tape Casting of Anode‐Supported Solid Oxide Fuel Cells , 2014 .

[8]  Yixiang Shi,et al.  Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels , 2014 .

[9]  A. Simchi,et al.  Electrophoretic deposition of functionally-graded NiO–YSZ composite films , 2013 .

[10]  S. Bandopadhyay,et al.  High-temperature mechanical properties of reduced NiO–8YSZ anode-supported bi-layer SOFC structures in ambient air and reducing environments , 2013 .

[11]  Fabio Rinaldi,et al.  Thermal–economic–environmental analysis and multi-objective optimization of an internal-reforming solid oxide fuel cell–gas turbine hybrid system , 2012 .

[12]  E. Wachsman,et al.  The evolution of low temperature solid oxide fuel cells , 2012 .

[13]  Zongping Shao,et al.  Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells , 2012 .

[14]  Young Min Park,et al.  Effect of anode thickness on impedance response of anode-supported solid oxide fuel cells , 2012 .

[15]  Junxiang Shi,et al.  Microstructure Optimization Designs for Anode-Supported Planar Solid Oxide Fuel Cells , 2011 .

[16]  Meilin Liu,et al.  Rational SOFC material design: new advances and tools , 2011 .

[17]  D. Brett,et al.  Towards intelligent engineering of SOFC electrodes: a review of advanced microstructural characterisation techniques , 2010 .

[18]  S. Hyun,et al.  NiO/YSZ–YSZ Nanocomposite Functional Layer for High Performance Solid Oxide Fuel Cell Anodes , 2010 .

[19]  H. Iwai,et al.  Quantitative Evaluation of Transport Properties of SOFC Porous Anode by Random Walk Process , 2009, ECS Transactions.

[20]  Ibrahim Dincer,et al.  A numerical investigation of modeling an SOFC electrode as two finite layers , 2009 .

[21]  Appleby Encyclopedia of Electrochemical Power Sources Volume 146 || FUEL CELLS – PHOSPHORIC ACID FUEL CELLS | Overview , 2009 .

[22]  A. Appleby FUEL CELLS – OVERVIEW | Introduction , 2009 .

[23]  Z. Lü,et al.  Performance of an anode-supported SOFC with anode functional layers , 2008 .

[24]  H. Arai,et al.  Development of Practical Size Anode-Supported Solid Oxide Fuel Cells with Multilayer Anode Structures , 2008 .

[25]  S. Barnett,et al.  Solid Oxide Fuel Cell Ni–YSZ Anodes: Effect of Composition on Microstructure and Performance , 2008 .

[26]  Minfang Han,et al.  Fabrication and properties of anode-supported solid oxide fuel cell , 2008 .

[27]  K. Yoon,et al.  Effect of Anode Active Layer on Performance of Single-Step Cofired Solid Oxide Fuel Cells , 2008 .

[28]  Hwan Moon,et al.  Characteristics of SOFC single cells with anode active layer via tape casting and co-firing , 2008 .

[29]  P. Costamagna,et al.  Simulation of mass transport in SOFC composite electrodes , 2008 .

[30]  Jung-Hoon Song,et al.  Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC , 2008 .

[31]  Hwan Moon,et al.  Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing , 2008 .

[32]  Dennis Y.C. Leung,et al.  Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes , 2007 .

[33]  Dennis Y.C. Leung,et al.  Micro-scale modeling of a functionally graded Ni-YSZ anode , 2007 .

[34]  Naiqing Zhang,et al.  Ni–YSZ gradient anodes for anode-supported SOFCs , 2007 .

[35]  Adriana Del Borghi,et al.  Effects of Mass Transport on the Performance of Solid Oxide Fuel Cells Composite Electrodes , 2007 .

[36]  D. Ivey,et al.  Enhancing the Redox Tolerance of Anode-Supported SOFC by Microstructural Modification , 2007 .

[37]  W. Chiu,et al.  Mass transfer in graded microstructure solid oxide fuel cell electrodes , 2006 .

[38]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[39]  Rajamani Krishna,et al.  Mass Transfer in Multicomponent Mixtures , 2006 .

[40]  D. A. Noren,et al.  Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models , 2005 .

[41]  Yann Bultel,et al.  Theoretical optimisation of a SOFC composite cathode , 2005 .

[42]  Doris Sebold,et al.  Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs , 2005 .

[43]  A. Virkar,et al.  Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .

[44]  Y. Bultel,et al.  Modelling of a SOFC graded cathode , 2005 .

[45]  Paola Costamagna,et al.  Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC) , 2004 .

[46]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[47]  Seetharama C. Deevi,et al.  A review on the status of anode materials for solid oxide fuel cells , 2003 .

[48]  Nigel P. Brandon,et al.  Recent Advances in Materials for Fuel Cells , 2003 .

[49]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[50]  E. Ivers-Tiffée,et al.  Development of a multilayer anode for solid oxide fuel cells , 2002 .

[51]  Paola Costamagna,et al.  Effect of composition on the performance of cermet electrodes. Experimental and theoretical approach , 2002 .

[52]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[53]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[54]  B. Steele Materials for IT-SOFC stacks: 35 years R&D: the inevitability of gradualness? , 2000 .

[55]  Mogens Bjerg Mogensen,et al.  Structure/Performance Relations for Ni/Yttria‐Stabilized Zirconia Anodes for Solid Oxide Fuel Cells , 2000 .

[56]  Paola Costamagna,et al.  Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization , 1998 .

[57]  V. Antonucci,et al.  Micro-modelling of solid oxide fuel cell electrodes , 1998 .

[58]  Elisabetta Arato,et al.  Some more considerations on the optimization of cermet solid oxide fuel cell electrodes , 1998 .

[59]  S. Osawa,et al.  High Temperature Air Cathodes Containing Ion Conductive Oxides , 1991 .

[60]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[61]  E. A. Mason,et al.  Gas Transport in Porous Media: The Dusty-Gas Model , 1983 .