Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always.

[1]  J. Hannibal,et al.  Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity , 2017, The Journal of comparative neurology.

[2]  Jiawei Wang,et al.  Melanopsin-Containing or Non-Melanopsin-Containing Retinal Ganglion Cells Response to Acute Ocular Hypertension With or Without Brain-Derived Neurotrophic Factor Neuroprotection. , 2016, Investigative ophthalmology & visual science.

[3]  J. Hannibal,et al.  Loss of Melanopsin-Expressing Retinal Ganglion Cells in Severely Staged Glaucoma Patients. , 2016, Investigative ophthalmology & visual science.

[4]  T. Brown Using light to tell the time of day: sensory coding in the mammalian circadian visual network , 2016, Journal of Experimental Biology.

[5]  A. Avivi,et al.  Non-image Forming Light Detection by Melanopsin, Rhodopsin, and Long-Middlewave (L/W) Cone Opsin in the Subterranean Blind Mole Rat, Spalax Ehrenbergi: Immunohistochemical Characterization, Distribution, and Connectivity , 2016, Front. Neuroanat..

[6]  Torsten Strasser,et al.  Pupillary responses driven by ipRGCs and classical photoreceptors are impaired in glaucoma , 2016, Graefe's Archive for Clinical and Experimental Ophthalmology.

[7]  Paul D. Gamlin,et al.  Melanopsin‐expressing ganglion cells on macaque and human retinas form two morphologically distinct populations , 2016, The Journal of comparative neurology.

[8]  Joanna Mattis,et al.  Circadian Rhythms, Sleep, and Disorders of Aging , 2016, Trends in Endocrinology & Metabolism.

[9]  S. Tufik,et al.  Relationship between Daytime Sleepiness and Intrinsically Photosensitive Retinal Ganglion Cells in Glaucomatous Disease , 2016, Journal of ophthalmology.

[10]  P. Avanzini,et al.  Melanopsin retinal ganglion cell loss in Alzheimer disease , 2015, Annals of neurology.

[11]  Paloma Sobrado-Calvo,et al.  Long-Term Effect of Optic Nerve Axotomy on the Retinal Ganglion Cell Layer. , 2015, Investigative ophthalmology & visual science.

[12]  Dan Milea,et al.  Pupillary Responses to High-Irradiance Blue Light Correlate with Glaucoma Severity. , 2015, Ophthalmology.

[13]  Francesco Pierelli,et al.  Optical Coherence Tomography in Alzheimer’s Disease: A Meta-Analysis , 2015, PloS one.

[14]  T. Münch,et al.  Influence of Opa1 Mutation on Survival and Function of Retinal Ganglion Cells. , 2015, Investigative ophthalmology & visual science.

[15]  María del Pilar Gomez,et al.  Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus , 2015, Proceedings of the National Academy of Sciences.

[16]  Augusto Paranhos,et al.  Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma. , 2015, Ophthalmology.

[17]  M. Vidal-Sanz,et al.  BDNF Rescues RGCs But Not Intrinsically Photosensitive RGCs in Ocular Hypertensive Albino Rat Retinas. , 2015, Investigative ophthalmology & visual science.

[18]  M. Larsen,et al.  Dissociation of Pupillary Post-Illumination Responses from Visual Function in Confirmed OPA1 c.983A > G and c.2708_2711delTTAG Autosomal Dominant Optic Atrophy , 2015, Front. Neurol..

[19]  D. Ventura,et al.  A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma. , 2014, Investigative ophthalmology & visual science.

[20]  G. E. Pickard,et al.  THE INJURY RESISTANT ABILITY OF MELANOPSIN-EXPRESSING INTRINSICALLY PHOTOSENSITIVE RETINAL GANGLION CELLS , 2014, Neuroscience.

[21]  N. Osborne,et al.  The effect of visual blue light on mitochondrial function associated with retinal ganglions cells. , 2014, Experimental eye research.

[22]  D. Bennett,et al.  Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer's disease. , 2014, Brain : a journal of neurology.

[23]  Lene Rask,et al.  The Light‐Induced FOS Response in Melanopsin Expressing HEK‐293 Cells is Correlated with Melanopsin Quantity and Dependent on Light Duration and Irradiance , 2014, Photochemistry and photobiology.

[24]  N. Brecha,et al.  Melanopsin Ganglion Cells Are the Most Resistant Retinal Ganglion Cell Type to Axonal Injury in the Rat Retina , 2014, PloS one.

[25]  H. Lund‐Andersen,et al.  Monochromatic Pupillometry in Unilateral Glaucoma Discloses no Adaptive Changes Subserved by the ipRGCs , 2014, Front. Neurol..

[26]  A. Spitze,et al.  Maintenance of pupillary response in a glaucoma patient with no light perception due to persistence of melanopsin ganglion cells. , 2014, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[27]  C. Gias,et al.  A role for the ciliary marginal zone in the melanopsin-dependent intrinsic pupillary light reflex. , 2014, Experimental eye research.

[28]  M. Zeviani,et al.  Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy , 2013, Brain : a journal of neurology.

[29]  C. La Morgia,et al.  Mitochondrial optic neuropathies: our travels from bench to bedside and back again , 2013, Clinical & experimental ophthalmology.

[30]  D. Hood,et al.  The pupil light reflex in Leber's hereditary optic neuropathy: evidence for preservation of melanopsin-expressing retinal ganglion cells. , 2013, Investigative ophthalmology & visual science.

[31]  Hannah R. Joo,et al.  Recurrent axon collaterals of intrinsically photosensitive retinal ganglion cells , 2013, Visual Neuroscience.

[32]  Alan C. Rupp,et al.  ipRGCs mediate ipsilateral pupil constriction , 2013 .

[33]  M. Pu,et al.  Melanopsin-expressing retinal ganglion cell loss and behavioral analysis in the Thy1-CFP-DBA/2J mouse model of glaucoma , 2013, Science China Life Sciences.

[34]  R. Douglas,et al.  Non-Image-Forming Light Driven Functions Are Preserved in a Mouse Model of Autosomal Dominant Optic Atrophy , 2013, PloS one.

[35]  C. Grimm,et al.  Intrinsically photosensitive retinal ganglion cells are resistant to N-methyl-D-aspartic acid excitotoxicity , 2012, Molecular vision.

[36]  Sunggu Yang,et al.  Aberrant light directly impairs mood and learning through melanopsin-expressing neurons , 2012, Nature.

[37]  V. Carelli,et al.  Mathematically modeling the involvement of axons in Leber's hereditary optic neuropathy. , 2012, Investigative ophthalmology & visual science.

[38]  Bart G Borghuis,et al.  Form and Function of the M4 Cell, an Intrinsically Photosensitive Retinal Ganglion Cell Type Contributing to Geniculocortical Vision , 2012, The Journal of Neuroscience.

[39]  Anna Matynia,et al.  Melanopsin-Positive Intrinsically Photosensitive Retinal Ganglion Cells: From Form to Function , 2011, The Journal of Neuroscience.

[40]  Samer Hattar,et al.  Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions , 2011, Trends in Neurosciences.

[41]  D. Golombek,et al.  Effect of experimental glaucoma on the non‐image forming visual system , 2011, Journal of neurochemistry.

[42]  P. Chinnery,et al.  Mitochondrial optic neuropathies – Disease mechanisms and therapeutic strategies , 2011, Progress in Retinal and Eye Research.

[43]  V. Carelli,et al.  Melanopsin-expressing retinal ganglion cells: implications for human diseases , 2011, Vision Research.

[44]  P. de la Villa,et al.  Evaluation of functional integrity of the retinohypothalamic tract in advanced glaucoma using multifocal electroretinography and light-induced melatonin suppression. , 2010, Experimental eye research.

[45]  R. Foster,et al.  Vertebrate ancient opsin and melanopsin: divergent irradiance detectors , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[46]  K. Yau,et al.  Intrinsically photosensitive retinal ganglion cells. , 2010, Physiological reviews.

[47]  J. García-Fernández,et al.  Postnatal development and functional adaptations of the melanopsin photoreceptive system in the albino mouse retina. , 2010, Investigative ophthalmology & visual science.

[48]  G. Cantalupo,et al.  Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies. , 2010, Brain : a journal of neurology.

[49]  Glen T. Prusky,et al.  Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision , 2010, Neuron.

[50]  D. Milea,et al.  Selective wavelength pupillometry in Leber hereditary optic neuropathy , 2010, Clinical & experimental ophthalmology.

[51]  F. Germain,et al.  ALTERATIONS IN NOCTURNAL MELATONIN LEVELS IN PATIENTS WITH OPTIC NEUROPATHIES ALTERACIONES DE LA SECRECIÓN NOCTURNA DE MELATONINA Y NEUROPATÍAS ÓPTICAS , 2009 .

[52]  P. de la Villa,et al.  [Alterations in nocturnal melatonin secretion in patients with optic neuropathies]. , 2009, Archivos de la Sociedad Espanola de Oftalmologia.

[53]  Christianne E. Strang,et al.  Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey , 2014, The Journal of comparative neurology.

[54]  A. Martinuzzi,et al.  Respiratory Complex I Dysfunction Due to Mitochondrial DNA Mutations Shifts the Voltage Threshold for Opening of the Permeability Transition Pore toward Resting Levels* , 2009, Journal of Biological Chemistry.

[55]  C. Chiquet,et al.  Glaucoma Alters the Circadian Timing System , 2008, PloS one.

[56]  A. Terakita,et al.  Gq‐coupled Rhodopsin Subfamily Composed of Invertebrate Visual Pigment and Melanopsin † , 2008, Photochemistry and photobiology.

[57]  A. McKee,et al.  Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. , 2008, Brain : a journal of neurology.

[58]  M. Pu,et al.  Enhanced Survival of Melanopsin-expressing Retinal Ganglion Cells After Injury is Associated with the PI3 K/Akt Pathway , 2008, Cellular and Molecular Neurobiology.

[59]  G. E. Pickard,et al.  Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus , 2008, The European journal of neuroscience.

[60]  M. Moseley,et al.  Short-Wavelength Light Sensitivity of Circadian, Pupillary, and Visual Awareness in Humans Lacking an Outer Retina , 2007, Current Biology.

[61]  G. E. Pickard,et al.  Light-Evoked Calcium Responses of Isolated Melanopsin-Expressing Retinal Ganglion Cells , 2007, The Journal of Neuroscience.

[62]  Ulrike Grünert,et al.  Characterization and synaptic connectivity of melanopsin‐containing ganglion cells in the primate retina , 2007, The European journal of neuroscience.

[63]  B. Roska,et al.  Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing , 2007, Current Biology.

[64]  M. Rollag,et al.  Melanopsin Triggers the Release of Internal Calcium Stores in Response to Light † , 2007, Photochemistry and photobiology.

[65]  F. Gonzalez-Lima,et al.  Neurodegeneration Produced by Rotenone in the Mouse Retina: A Potential Model to Investigate Environmental Pesticide Contributions to Neurodegenerative Diseases , 2006, Journal of toxicology and environmental health. Part A.

[66]  Samer Hattar,et al.  Central projections of melanopsin‐expressing retinal ganglion cells in the mouse , 2006, The Journal of comparative neurology.

[67]  M. Pu,et al.  Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. , 2006, Investigative ophthalmology & visual science.

[68]  T. Holy,et al.  Physiologic Diversity and Development of Intrinsically Photosensitive Retinal Ganglion Cells , 2005, Neuron.

[69]  K. Yau,et al.  Melanopsin-Dependent Photoreception Provides Earliest Light Detection in the Mammalian Retina , 2005, Current Biology.

[70]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[71]  R. Foster,et al.  Neurobiology: Bright blue times , 2005, Nature.

[72]  M. Rollag,et al.  Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[73]  P. J. Larsen,et al.  Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. , 2004, Investigative ophthalmology & visual science.

[74]  J. Hannibal,et al.  Melanopsin containing retinal ganglion cells are light responsive from birth , 2004, Neuroreport.

[75]  G. A. Robinson,et al.  Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft , 2004, Vision Research.

[76]  V. Carelli,et al.  Mitochondrial dysfunction as a cause of optic neuropathies , 2004, Progress in Retinal and Eye Research.

[77]  G. E. Pickard,et al.  Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses , 2003, The Journal of comparative neurology.

[78]  E. Nevo,et al.  The circadian photopigment melanopsin is expressed in the blind subterranean mole rat, Spalax , 2002, Neuroreport.

[79]  J. Hannibal,et al.  Neurotransmitters of the retino-hypothalamic tract , 2002, Cell and Tissue Research.

[80]  C. Erb,et al.  High Occurrence Rate of Glaucoma among Patients with Alzheimer’s Disease , 2002, European Neurology.

[81]  K. Yau,et al.  Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.

[82]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[83]  Scarla J. Weeks,et al.  Anatomy: Photoreceptive net in the mammalian retina , 2002, Nature.

[84]  J. Hannibal,et al.  Melanopsin: a novel photopigment involved in the photoentrainment of the brain's biological clock? , 2002, Annals of medicine.

[85]  Jun Lu,et al.  Melanopsin in cells of origin of the retinohypothalamic tract , 2001, Nature Neuroscience.

[86]  J. P. Card,et al.  Light-Dependent Induction of cFos during Subjective Day and Night in PACAP-Containing Ganglion Cells of the Retinohypothalamic Tract , 2001, Journal of biological rhythms.

[87]  W. P. Hayes,et al.  A Novel Human Opsin in the Inner Retina , 2000, The Journal of Neuroscience.

[88]  J. Shallo-Hoffmann,et al.  Comparing pupil function with visual function in patients with Leber's hereditary optic neuropathy. , 1999, Investigative ophthalmology & visual science.

[89]  R. Foster,et al.  Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[90]  R. Foster,et al.  Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[91]  W. P. Hayes,et al.  Melanopsin: An opsin in melanophores, brain, and eye. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[92]  R. Moore,et al.  The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells , 1995, The Journal of comparative neurology.

[93]  I. Chambille,et al.  Neurotoxic effects of neonatal injections of monosodium L‐glutamate (L‐MSG) on the retinal ganglion cell layer of the golden hamster: Anatomical and functional consequences on the circadian system , 1993, The Journal of comparative neurology.

[94]  L. Garey,et al.  Injury-resistant retinal ganglion cells that are rich in cytochrome oxidase. , 1993, Neuroreport.

[95]  Eviatar Nevo,et al.  Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal , 1993, Nature.

[96]  M. Menaker,et al.  Circadian photoreception in the retinally degenerate mouse (rd/rd) , 1991, Journal of Comparative Physiology A.

[97]  C. Miller,et al.  Optic-nerve degeneration in Alzheimer's disease. , 1986, The New England journal of medicine.

[98]  D. F. Swaab,et al.  The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia , 1985, Brain Research.

[99]  Lois E. H. Smith,et al.  A retinohypothalamic pathway in man: Light mediation of circadian rhythms , 1984, Brain Research.

[100]  R. Moore,et al.  A retinohypothalamic projection in the rat , 1972, The Journal of comparative neurology.

[101]  Paul R. Martin,et al.  Melanopsin‐expressing ganglion cells in human retina: Morphology, distribution, and synaptic connections , 2019, The Journal of comparative neurology.

[102]  M. Avilés-Trigueros,et al.  Retinal neurodegeneration in experimental glaucoma. , 2015, Progress in brain research.

[103]  J. Hannibal Roles of PACAP-containing retinal ganglion cells in circadian timing. , 2006, International review of cytology.

[104]  L. Maffei,et al.  Long term survival of cat retinal ganglion cells after intracranial optic nerve transection , 2004, Experimental Brain Research.

[105]  Izzo,et al.  SUPPRESSION OF MELATONIN SECRETION IN SOME BLIND PATIENTS BY EXPOSURE TO BRIGHT LIGHT , 2001 .

[106]  P. Win,et al.  Leber's hereditary optic neuropathy differentially affects smaller axons in the optic nerve. , 2000, Transactions of the American Ophthalmological Society.

[107]  E. Stopa,et al.  Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. , 1999, Journal of neuropathology and experimental neurology.