Quantum Circuit Placement

We study the problem of the practical realization of an abstract quantum circuit when executed on a quantum hardware. By practical, we mean adapting the circuit to particulars of the physical environment which restricts/complicates the establishment of certain direct interactions between qubits. This is a quantum version of the classical circuit placement problem. We study the theoretical aspects of the problem and also present empirical results that match the best known solutions that have been developed by experimentalists. Finally, we discuss the efficiency of the approach and the scalability of its implementation with regard to the future development of quantum hardware.

[1]  B. E. Kane,et al.  Hydrogenic spin quantum computing in silicon: a digital approach. , 2002, Physical review letters.

[2]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[3]  S. Glaser,et al.  Realization of a 5-bit nmr quantum computer using a new molecular architecture , 1999, quant-ph/9905087.

[4]  E. Knill,et al.  Implementation of the Five Qubit Error Correction Benchmark , 2001, quant-ph/0101034.

[5]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.

[6]  MeterRodney Van,et al.  Architectural implications of quantum computing technologies , 2006 .

[7]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[8]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[9]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[10]  Luciano Lavagno,et al.  Electronic Design Automation for Integrated Circuits Handbook , 2006 .

[11]  D. Maslov,et al.  Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite-neighbor quantum architectures , 2007 .

[12]  Michele Mosca,et al.  Approximate quantum cloning with nuclear magnetic resonance. , 2002, Physical review letters.

[13]  J. A. Jones,et al.  NMR Quantum Computation: A Critical Evaluation , 2000, quant-ph/0002085.

[14]  Frederic T. Chong,et al.  Toward a scalable, silicon-based quantum computing architecture , 2003 .

[15]  R. Laflamme,et al.  Using error correction to determine the noise model , 2007 .

[16]  John Kubiatowicz,et al.  Automated generation of layout and control for quantum circuits , 2007, CF '07.

[17]  Andrew T. Sornborger,et al.  Quantum Computing with Superconductors I: Architectures , 2007 .

[18]  Timothy F. Havel,et al.  Benchmarking quantum control methods on a 12-qubit system. , 2006, Physical review letters.

[19]  R Laflamme,et al.  Benchmarking quantum computers: the five-qubit error correcting code. , 2001, Physical review letters.

[20]  K. B. Whaley,et al.  Geometric theory of nonlocal two-qubit operations , 2002, quant-ph/0209120.

[21]  Simon J. Devitt,et al.  Implementation of Shor's algorithm on a linear nearest neighbour qubit array , 2004, Quantum Inf. Comput..

[22]  Mark Oskin,et al.  Architectural implications of quantum computing technologies , 2006, ACM J. Emerg. Technol. Comput. Syst..

[23]  E. Knill,et al.  Compiling gate networks on an Ising quantum computer (5 pages) , 2005 .

[24]  P. Foggia,et al.  Performance evaluation of the VF graph matching algorithm , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  L M Vandersypen,et al.  Experimental realization of an order-finding algorithm with an NMR quantum computer. , 2000, Physical review letters.

[27]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[28]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..