Inferring Neuronal Dynamics from Calcium Imaging Data Using Biophysical Models and Bayesian Inference

Calcium imaging has been used as a promising technique to monitor the dynamic activity of neuronal populations. However, the calcium trace is temporally smeared which restricts the extraction of quantities of interest such as spike trains of individual neurons. To address this issue, spike reconstruction algorithms have been introduced. One limitation of such reconstructions is that the underlying models are not informed about the biophysics of spike and burst generations. Such existing prior knowledge might be useful for constraining the possible solutions of spikes. Here we describe, in a novel Bayesian approach, how principled knowledge about neuronal dynamics can be employed to infer biophysical variables and parameters from fluorescence traces. By using both synthetic and in vitro recorded fluorescence traces, we demonstrate that the new approach is able to reconstruct different repetitive spiking and/or bursting patterns with accurate single spike resolution. Furthermore, we show that the high inference precision of the new approach is preserved even if the fluorescence trace is rather noisy or if the fluorescence transients show slow rise kinetics lasting several hundred milliseconds, and inhomogeneous rise and decay times. In addition, we discuss the use of the new approach for inferring parameter changes, e.g. due to a pharmacological intervention, as well as for inferring complex characteristics of immature neuronal circuits.

[1]  R. Stein Some models of neuronal variability. , 1967, Biophysical journal.

[2]  Jose C. Principe,et al.  Quantifying bursting neuron activity from calcium signals using blind deconvolution , 2013, Journal of Neuroscience Methods.

[3]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Norio Matsuki,et al.  Fast and accurate detection of action potentials from somatic calcium fluctuations. , 2008, Journal of neurophysiology.

[5]  R. Yuste,et al.  Detecting action potentials in neuronal populations with calcium imaging. , 1999, Methods.

[6]  Sarabjeet Singh Mehta,et al.  Total Removal of Baseline Drift from ECG Signal , 2007, 2007 International Conference on Computing: Theory and Applications (ICCTA'07).

[7]  K. Svoboda,et al.  Imaging Calcium Concentration Dynamics in Small Neuronal Compartments , 2004, Science's STKE.

[8]  Xavier Leinekugel,et al.  Giant Depolarizing Potentials: the Septal Pole of the Hippocampus Paces the Activity of the Developing Intact Septohippocampal ComplexIn Vitro , 1998, The Journal of Neuroscience.

[9]  E. Teramoto,et al.  Mathematical Topics in Population Biology, Morphogenesis and Neurosciences , 1987 .

[10]  Rustem Khazipov,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience , 2022 .

[11]  Alexander Borst,et al.  In Vivo Performance of Genetically Encoded Indicators of Neural Activity in Flies , 2005, The Journal of Neuroscience.

[12]  R. Yuste,et al.  High Speed Two-Photon Imaging of Calcium Dynamics in Dendritic Spines: Consequences for Spine Calcium Kinetics and Buffer Capacity , 2007, PLoS ONE.

[13]  James E. Fitzgerald,et al.  Photon shot noise limits on optical detection of neuronal spikes and estimation of spike timing. , 2013, Biophysical journal.

[14]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[15]  R. Yuste,et al.  Mechanisms of Calcium Decay Kinetics in Hippocampal Spines: Role of Spine Calcium Pumps and Calcium Diffusion through the Spine Neck in Biochemical Compartmentalization , 2000, The Journal of Neuroscience.

[16]  Jian-Young Wu,et al.  Initiation and propagation of neuronal coactivation in the developing hippocampus. , 2006, Journal of neurophysiology.

[17]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[18]  Toshiyuki Tanaka,et al.  A Theory of Mean Field Approximation , 1998, NIPS.

[19]  Wulfram Gerstner,et al.  Inference of neuronal network spike dynamics and topology from calcium imaging data , 2013, Front. Neural Circuits.

[20]  Y. Yaari,et al.  Extracellular Calcium Modulates Persistent Sodium Current-Dependent Burst-Firing in Hippocampal Pyramidal Neurons , 2001, The Journal of Neuroscience.

[21]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[22]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[23]  Gilles Laurent,et al.  Estimating Firing Rates from Calcium Signals in Locust Projection Neurons in Vivo , 2007, Frontiers in neural circuits.

[24]  A Konnerth,et al.  Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  John Ashburner,et al.  Kernel methods for fMRI pattern prediction , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[26]  Eugene M. Izhikevich,et al.  FitzHugh-Nagumo model , 2006, Scholarpedia.

[27]  B. Richmond,et al.  Intrinsic dynamics in neuronal networks. I. Theory. , 2000, Journal of neurophysiology.

[28]  Hans Knutsson,et al.  Detection and detrending in fMRI data analysis , 2004, NeuroImage.

[29]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[30]  G. J. Brakenhoff,et al.  Fluorescence saturation in confocal microscopy , 1994 .

[31]  J D Clements,et al.  Detection of spontaneous synaptic events with an optimally scaled template. , 1997, Biophysical journal.

[32]  E. Yaksi,et al.  Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging , 2006, Nature Methods.

[33]  S. Sherman,et al.  Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. , 2000, Journal of neurophysiology.

[34]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[35]  Y. Yaari,et al.  Ionic basis of spike after‐depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. , 1996, The Journal of physiology.

[36]  F. Engert,et al.  Reverse correlation of rapid calcium signals in the zebrafish optic tectum in vivo , 2006, Journal of Neuroscience Methods.

[37]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[38]  Y. Ben-Ari,et al.  Giant synaptic potentials in immature rat CA3 hippocampal neurones. , 1989, The Journal of physiology.

[39]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[40]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[41]  Gayathri N Ranganathan,et al.  Optical recording of neuronal spiking activity from unbiased populations of neurons with high spike detection efficiency and high temporal precision. , 2010, Journal of neurophysiology.

[42]  G. Buzsáki,et al.  Temporal Interaction between Single Spikes and Complex Spike Bursts in Hippocampal Pyramidal Cells , 2001, Neuron.

[43]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[44]  R. Traub Simulation of intrinsic bursting in CA3 hippocampal neurons , 1982, Neuroscience.

[45]  Hans Knutsson,et al.  Exploratory fMRI Analysis by Autocorrelation Maximization , 2002, NeuroImage.

[46]  J. Duyn,et al.  Investigation of Low Frequency Drift in fMRI Signal , 1999, NeuroImage.

[47]  J. Hindmarsh,et al.  The assembly of ionic currents in a thalamic neuron III. The seven-dimensional model , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[48]  Fritjof Helmchen,et al.  Calibration of fluorescent calcium indicators. , 2011, Cold Spring Harbor protocols.

[49]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[50]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[51]  Jeff Moehlis,et al.  Canards for a reduction of the Hodgkin-Huxley equations , 2006, Journal of mathematical biology.

[52]  D. Hansel,et al.  How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs , 2003, The Journal of Neuroscience.

[53]  Henry C. Tuckwell,et al.  Quantitative aspects of L-type Ca2+ currents , 2012, Progress in Neurobiology.

[54]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[55]  A Konnerth,et al.  Localized calcium signalling and neuronal integration in cerebellar Purkinje neurones. , 1996, Cell calcium.

[56]  Wade G Regehr,et al.  Reliability and Heterogeneity of Calcium Signaling at Single Presynaptic Boutons of Cerebellar Granule Cells , 2007, The Journal of Neuroscience.

[57]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[58]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[59]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[60]  Matthias H. Hennig,et al.  Theoretical models of synaptic short term plasticity , 2013, Front. Comput. Neurosci..

[61]  Ivona Brasnjevic,et al.  Imaging in Neuroscience and Development: A Laboratory Manual, Yuste Rafael, Konnerth Arthur (Eds.). Cold Spring Harbor Laboratory Press (2005), (Price: US$ 159.00, ISBN 0-87969-689-3) , 2006 .

[62]  Y. Yaari,et al.  KCNQ/M Channels Control Spike Afterdepolarization and Burst Generation in Hippocampal Neurons , 2004, The Journal of Neuroscience.

[63]  M. Stewart,et al.  Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea‐pig hippocampus. , 1992, The Journal of physiology.

[64]  David S. Greenberg,et al.  Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex , 2007, The Journal of Neuroscience.

[65]  Rafael Yuste,et al.  Fast nonnegative deconvolution for spike train inference from population calcium imaging. , 2009, Journal of neurophysiology.

[66]  Takeharu Nagai,et al.  Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano , 2010, Nature Methods.

[67]  D. Amaral,et al.  Intracellular recording and labeling of mossy cells and proximal CA3 pyramidal cells in macaque monkeys , 2001, The Journal of comparative neurology.

[68]  Juha Voipio,et al.  Intrinsic bursting of immature CA3 pyramidal neurons and consequent giant depolarizing potentials are driven by a persistent Na+ current and terminated by a slow Ca2+‐activated K+ current , 2006, The European journal of neuroscience.

[69]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[70]  Hajime Takano,et al.  Deterministic and Stochastic Neuronal Contributions to Distinct Synchronous CA3 Network Bursts , 2012, The Journal of Neuroscience.

[71]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[72]  Anthony N. Burkitt,et al.  A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input , 2006, Biological Cybernetics.

[73]  W. Catterall,et al.  Role of calcium channel subtypes in calcium transients in hippocampal CA3 neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  W. Catterall Structure and regulation of voltage-gated Ca2+ channels. , 2000, Annual review of cell and developmental biology.

[75]  David Golomb,et al.  Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. , 2006, Journal of neurophysiology.

[76]  Colleen E. Clancy,et al.  Ionic Mechanisms of Endogenous Bursting in CA3 Hippocampal Pyramidal Neurons: A Model Study , 2008, PloS one.

[77]  Karl J. Friston,et al.  Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models , 2009, Physica D. Nonlinear phenomena.

[78]  R. Khazipov,et al.  GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. , 2007, Physiological reviews.

[79]  Diane Lipscombe,et al.  Neuronal L-Type Calcium Channels Open Quickly and Are Inhibited Slowly , 2005, The Journal of Neuroscience.

[80]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[81]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[82]  Pier Luigi Dragotti,et al.  A finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imaging , 2013, Journal of neural engineering.

[83]  K. Svoboda,et al.  The Functional Microarchitecture of the Mouse Barrel Cortex , 2007, Neuroscience Research.

[84]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[85]  Brendon O. Watson,et al.  Spike inference from calcium imaging using sequential Monte Carlo methods. , 2009, Biophysical journal.

[86]  Xiao-Jing Wang,et al.  Bursting Neurons Signal Input Slope , 2002, The Journal of Neuroscience.

[87]  D. Cooper,et al.  The significance of action potential bursting in the brain reward circuit , 2002, Neurochemistry International.

[88]  F. Helmchen,et al.  In vivo calcium imaging of neural network function. , 2007, Physiology.

[89]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[90]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[91]  Jack Waters,et al.  Altered Calcium Metabolism in Aging CA1 Hippocampal Pyramidal Neurons , 2013, The Journal of Neuroscience.

[92]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[93]  J. Tiago Gonçalves,et al.  Internally Mediated Developmental Desynchronization of Neocortical Network Activity , 2009, The Journal of Neuroscience.

[94]  Fritjof Helmchen,et al.  Calibration protocols for fluorescent calcium indicators. , 2011, Cold Spring Harbor protocols.

[95]  J. Rinzel Excitation dynamics: insights from simplified membrane models. , 1985, Federation proceedings.

[96]  David Terman,et al.  Mathematical foundations of neuroscience , 2010 .

[97]  G. Bergey,et al.  Reduction of intracellular calcium removal rate can explain changes in seizure dynamics: studies in neuronal network models , 2003, Epilepsy Research.

[98]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[99]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[100]  Karel Svoboda,et al.  Monitoring Neural Activity and [Ca2+] with Genetically Encoded Ca2+ Indicators , 2004, The Journal of Neuroscience.

[101]  B Sakmann,et al.  Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. , 1995, The Journal of physiology.

[102]  R. FitzHugh Mathematical models of threshold phenomena in the nerve membrane , 1955 .

[103]  Gunnar Blohm,et al.  Calcium-Dependent Calcium Decay Explains STDP in a Dynamic Model of Hippocampal Synapses , 2014, PloS one.

[104]  Anne E Carpenter,et al.  Visualization of image data from cells to organisms , 2010, Nature Methods.

[105]  Joshua T. Vogelstein,et al.  A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data , 2011, 1107.4228.

[106]  J. Hindmarsh,et al.  The assembly of ionic currents in a thalamic neuron I. The three-dimensional model , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[107]  Karl J. Friston,et al.  Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise? , 2012, NeuroImage.

[108]  Bruce W. Knight,et al.  Dynamics of Encoding in a Population of Neurons , 1972, The Journal of general physiology.

[109]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[110]  Bard Ermentrout,et al.  Linearization of F-I Curves by Adaptation , 1998, Neural Computation.

[111]  William Erik Sherwood FitzHugh-Nagumo Model , 2014, Encyclopedia of Computational Neuroscience.

[112]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[113]  Nathalie L Rochefort,et al.  Sparsification of neuronal activity in the visual cortex at eye-opening , 2009, Proceedings of the National Academy of Sciences.

[114]  Lionel Rigoux,et al.  VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data , 2014, PLoS Comput. Biol..

[115]  Mriganka Sur,et al.  Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[116]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[117]  H. Markram,et al.  t Synchrony Generation in Recurrent Networks with Frequency-Dependent Synapses , 2000, The Journal of Neuroscience.

[118]  D. P. Russell,et al.  Treatment of baseline drifts in fMRI time series analysis. , 1999, Journal of computer assisted tomography.

[119]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[120]  Henry Markram,et al.  Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons , 2008, Biological Cybernetics.

[121]  Karl J. Friston,et al.  Bayesian model selection for group studies — Revisited , 2014, NeuroImage.

[122]  Oren Shriki,et al.  Rate Models for Conductance-Based Cortical Neuronal Networks , 2003, Neural Computation.