Instance-Based Label Ranking using the Mallows Model

In this paper, we introduce a new instance-based approach to the label ranking problem. This approach is based on a probability model on rankings which is known as the Mallows model in statistics. Probabilistic modeling provides the basis for a theoretically sound prediction procedure in the form of maximum likelihood estimation. Moreover, it allows for complementing predictions by diverse types of statistical information, for example regarding the reliability of an estimation. Empirical experiments show that our approach is competitive to start-of-the-art methods for label ranking and performs quite well even in the case of incomplete ranking information.

[1]  Dan Roth,et al.  Constraint Classification for Multiclass Classification and Ranking , 2002, NIPS.

[2]  Eyke Hüllermeier,et al.  Ranking by pairwise comparison a note on risk minimization , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[3]  Yoram Singer,et al.  Log-Linear Models for Label Ranking , 2003, NIPS.

[4]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[5]  Persi Diaconis,et al.  What Do We Know about the Metropolis Algorithm? , 1998, J. Comput. Syst. Sci..

[6]  Persi Diaconis,et al.  What do we know about the Metropolis algorithm? , 1995, STOC '95.

[7]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[8]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[9]  Eyke Hüllermeier,et al.  Clustering of gene expression data using a local shape-based similarity measure , 2005, Bioinform..

[10]  Eyke Hüllermeier,et al.  Label ranking by learning pairwise preferences , 2008, Artif. Intell..

[11]  Eyke Hüllermeier,et al.  Case-Based Multilabel Ranking , 2007, IJCAI.

[12]  Thomas Hofmann,et al.  Support vector machine learning for interdependent and structured output spaces , 2004, ICML.

[13]  Johannes Fürnkranz,et al.  Round Robin Classification , 2002, J. Mach. Learn. Res..

[14]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[15]  Eyke Hüllermeier,et al.  A Unified Model for Multilabel Classification and Ranking , 2006, ECAI.

[16]  Roni Khardon,et al.  Noise Tolerant Variants of the Perceptron Algorithm , 2007, J. Mach. Learn. Res..

[17]  Dan Roth,et al.  Constraint Classification: A New Approach to Multiclass Classification , 2002, ALT.

[18]  Eyke Hüllermeier,et al.  Case-Based Label Ranking , 2006, ECML.

[19]  Eyke Hüllermeier,et al.  Case-Based Approximate Reasoning , 2007, Theory and Decision Library.

[20]  Y. Singer,et al.  Ultraconservative online algorithms for multiclass problems , 2003 .

[21]  Eyke Hüllermeier,et al.  Pairwise Preference Learning and Ranking , 2003, ECML.

[22]  Huan Liu,et al.  Book review: Machine Learning, Neural and Statistical Classification Edited by D. Michie, D.J. Spiegelhalter and C.C. Taylor (Ellis Horwood Limited, 1994) , 1996, SGAR.

[23]  Mikhail Belkin,et al.  Margin Semi-Supervised Learning for Structured Variables , 2005, NIPS.

[24]  Mikhail Belkin,et al.  Maximum Margin Semi-Supervised Learning for Structured Variables , 2005, NIPS 2005.

[25]  M. Fligner,et al.  Distance Based Ranking Models , 1986 .