Novel configuration of finite-impulse-response filters tolerant to carrier-phase fluctuations in digital coherent optical receivers for higher-order quadrature amplitude modulation signals.

We propose a novel configuration of the finite-impulse-response (FIR) filter adapted by the phase-dependent decision-directed least-mean-square (DD-LMS) algorithm in digital coherent optical receivers. Since fast carrier-phase fluctuations are removed from the error signal which updates tap coefficients of the FIR filter, we can achieve stable adaptation of filter-tap coefficients for higher-order quadrature-amplitude modulation (QAM) signals. Computer simulations show that our proposed scheme is much more tolerant to the phase noise and the frequency offset than the conventional DD-LMS scheme. Such theoretical predictions are also validated experimentally by using a 10-Gsymbol/s dual-polarization 16-QAM signal.