Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Programs

In this paper it is tried to describe to some extent the theoretical background and several practical aspects of sequential quadratic programming (S.QP) methods for solving the following standard problem $$\matrix{ {\left( {\rm{p}} \right)\min {\rm{f}}\left( {\rm{x}} \right)} \cr {{\rm{x}} \in {{\rm{R}}^{\rm{n}}}:{{\rm{g}}_{\rm{j}}}\left( {\rm{x}} \right) \le {\rm{0, j = 1,2, \ldots ,mi}}} \cr {{\rm{ }}{{\rm{g}}_{\rm{j}}}\left( {\rm{x}} \right) = {\rm{0, j = mi + 1, \ldots ,m,}}} \cr }$$ Where f,gj ∈ C2 (Rn).

[1]  E. Beale On quadratic proramming , 1959 .

[2]  C. E. Lemke,et al.  A Method of Solution for Quadratic Programs , 1962 .

[3]  C. Panne,et al.  The Simplex and the Dual Method for Quadratic Programming , 1964 .

[4]  C. G. Broyden Quasi-Newton methods and their application to function minimisation , 1967 .

[5]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[6]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[7]  T. Pietrzykowski An Exact Potential Method for Constrained Maxima , 1969 .

[8]  M. Hestenes Multiplier and gradient methods , 1969 .

[9]  T. Pietrzykowski The potential method for conditional maxima in the locally compact metric spaces , 1970 .

[10]  B. Eaves On Quadratic Programming , 1971 .

[11]  R. Fletcher A General Quadratic Programming Algorithm , 1971 .

[12]  J. Stoer On the Numerical Solution of Constrained Least-Squares Problems , 1971 .

[13]  John E. Dennis,et al.  On the Local and Superlinear Convergence of Quasi-Newton Methods , 1973 .

[14]  J. J. Moré,et al.  A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .

[15]  R. Tyrrell Rockafellar,et al.  A dual approach to solving nonlinear programming problems by unconstrained optimization , 1973, Math. Program..

[16]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[17]  G. Schuller On the order of convergence of certain Quasi-Newton-methods , 1974 .

[18]  Josef Stoer On the convergence rate of imperfect minimization algorithms in Broyden'sβ-class , 1975, Math. Program..

[19]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[20]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[21]  R. Tapia Diagonalized multiplier methods and quasi-Newton methods for constrained optimization , 1977 .

[22]  J. Stoer,et al.  On the relation between quadratic termination and convergence properties of minimization algorithms , 1977 .

[23]  P. Toint On sparse and symmetric matrix updating subject to a linear equation , 1977 .

[24]  J. Stoer On the relation between quadratic termination and convergence properties of minimization algorithms , 1977 .

[25]  N. Maratos,et al.  Exact penalty function algorithms for finite dimensional and control optimization problems , 1978 .

[26]  W. Murray,et al.  Projected Lagrangian Methods Based on the Trajectories of Penalty and Barrier Functions. , 1978 .

[27]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[28]  R. Schnabel,et al.  Least Change Secant Updates for Quasi-Newton Methods , 1978 .

[29]  M. J. D. Powell,et al.  Algorithms for nonlinear constraints that use lagrangian functions , 1978, Math. Program..

[30]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .

[31]  Philip E. Gill,et al.  Numerically stable methods for quadratic programming , 1978, Math. Program..

[32]  R. M. Chamberlain,et al.  Some examples of cycling in variable metric methods for constrained minimization , 1979, Math. Program..

[33]  P. Toint On the Superlinear Convergence of an Algorithm for Solving a Sparse Minimization Problem , 1979 .

[34]  L. Grippo,et al.  A New Class of Augmented Lagrangians in Nonlinear Programming , 1979 .

[35]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .

[36]  K. Ritter On the rate of superlinear convergence of a class of variable metric methods , 1980 .

[37]  P. Boggs,et al.  Augmented Lagrangians which are quadratic in the multiplier , 1980 .

[38]  Luigi Grippo,et al.  A method for solving equality constrained optimization problems by unconstrained minimization , 1980 .

[39]  Andrzej STACHURSKI,et al.  Superlinear convergence of Broyden's boundedθ-class of methods , 1981, Math. Program..

[40]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[41]  H. Walker,et al.  Convergence Theorems for Least-Change Secant Update Methods, , 1981 .

[42]  K. Schittkowski On the Convergence of a Sequential Quadratic Programming Method with an Augmented Lagrangian Line Search Functions. , 1982 .

[43]  P. Boggs,et al.  On the Local Convergence of Quasi-Newton Methods for Constrained Optimization , 1982 .

[44]  Paul T. Boggs,et al.  Merit functions for nonlinear programming problems , 1982 .

[45]  P. Toint,et al.  Local convergence analysis for partitioned quasi-Newton updates , 1982 .

[46]  K. Schittkowski The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function , 1982 .

[47]  K. Schittkowski The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function , 1982 .

[48]  Donald Goldfarb,et al.  A numerically stable dual method for solving strictly convex quadratic programs , 1983, Math. Program..

[49]  Renpu Ge,et al.  The convergence of variable metric matrices in unconstrained optimization , 1983, Math. Program..

[50]  K. Jittorntrum Solution point differentiability without strict complementarity in nonlinear programming , 1984 .

[51]  Ya-Xiang Yuan On the Least Q-order of Convergence of Variable Metric Algorithms , 1984 .

[52]  J. Stoer The convergence of matrices generated by rank-2 methods from the restricted β-class of Broyden , 1984 .

[53]  Jonathan Goodman,et al.  Newton's method for constrained optimization , 1985, Math. Program..