QSPR Modeling of the AmIII/EuIII Separation Factor: How Far Can we Predict ?

Abstract Exhaustive quantitative structure‐property relationship (QSPR) modeling of the separation factor logSF for 46 polyazaheterocyclic ligands extracting Am3+ and Eu3+ from nitric acid aqueous solution to the 1,1,2,2–tetrachloroethane phase has been done using different computational approaches. Modeling methods included Multiple Linear Regression, Radial Basis Function Neural Networks, and Associated Neural Networks; two types of descriptors (substructural molecular fragments and molecular descriptors) and different techniques of variable selection have been employed. The developed QSPR models applied for novel t‐Bu‐hemi‐BTP ligand resulted in logSF=1.07−1.46; these predicted values somewhat exceed the experimental value logSF=1.0. Several hypothetical extractants potentially possessing high logSF values are proposed. An influence of uncertainties in initial experimental data as well as the choice of the theoretical approach on the performance of QSPR models is discussed.

[1]  Alexandre Varnek,et al.  QSAR modeling of blood:air and tissue:air partition coefficients using theoretical descriptors. , 2005, Bioorganic & medicinal chemistry.

[2]  A. Yu. Tsivadze,et al.  Structure-property modelling of complex formation of strontium with organic ligands in water , 2006 .

[3]  Martyn G. Ford,et al.  Unsupervised Forward Selection: A Method for Eliminating Redundant Variables , 2000, J. Chem. Inf. Comput. Sci..

[4]  Alexandre Varnek,et al.  Anti-HIV Activity of HEPT, TIBO, and Cyclic Urea Derivatives: Structure-Property Studies, Focused Combinatorial Library Generation, and Hits Selection Using Substructural Molecular Fragments Method , 2003, J. Chem. Inf. Comput. Sci..

[5]  Gilles Klopman,et al.  Recent methodologies for the estimation of n-octanol/water partition coefficients and their use in the prediction of membrane transport properties of drugs. , 2005, Mini reviews in medicinal chemistry.

[6]  D. Golden,et al.  Additivity rules for the estimation of thermochemical properties , 1969 .

[7]  Alexandre Varnek,et al.  Skin permeation rate as a function of chemical structure. , 2006, Journal of medicinal chemistry.

[8]  P. Comba,et al.  Molecular Mechanics Calculations and the Metal Ion Selective Extraction of Lanthanoids , 1998 .

[9]  Igor V. Tetko,et al.  Neural Network Studies, 4. Introduction to Associative Neural Networks , 2002, J. Chem. Inf. Comput. Sci..

[10]  Dan C. Fara,et al.  Quantitative Structure-Property Relationship Modeling of beta-Cyclodextrin Complexation Free Energies , 2004, J. Chem. Inf. Model..

[11]  J. L. Franklin Prediction of Heat and Free Energies of Organic Compounds , 1949 .

[12]  Alexandre Varnek,et al.  Modeling of Ion Complexation and Extraction Using Substructural Molecular Fragments , 2000, J. Chem. Inf. Comput. Sci..

[13]  D. Hoekman Exploring QSAR Fundamentals and Applications in Chemistry and Biology, Volume 1. Hydrophobic, Electronic and Steric Constants, Volume 2 J. Am. Chem. Soc. 1995, 117, 9782 , 1996 .

[14]  M. Drew,et al.  QSAR studies of multidentate nitrogen ligands used in lanthanide and actinide extraction processes , 2004 .

[15]  Alexandre Varnek,et al.  TOWARDS AN INFORMATION SYSTEM ON SOLVENT EXTRACTION , 2001 .

[16]  M. Mavrovouniotis Estimation of standard Gibbs energy changes of biotransformations. , 1991, The Journal of biological chemistry.

[17]  Igor V. Tetko,et al.  Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices , 2001, J. Chem. Inf. Comput. Sci..

[18]  Alexandre Varnek,et al.  Assessment of the Macrocyclic Effect for the Complexation of Crown-Ethers with Alkali Cations Using the Substructural Molecular Fragments Method , 2002, J. Chem. Inf. Comput. Sci..

[19]  Ian H. Witten,et al.  Data mining in bioinformatics using Weka , 2004, Bioinform..

[20]  M. Karelson Molecular descriptors in QSAR/QSPR , 2000 .

[21]  A. Varnek,et al.  Structure—property modeling of metal binders using molecular fragments , 2004 .

[22]  Igor V. Tetko,et al.  Benchmarking of Linear and Nonlinear Approaches for Quantitative Structure-Property Relationship Studies of Metal Complexation with Ionophores , 2006, J. Chem. Inf. Model..

[23]  Igor V. Tetko,et al.  Application of Associative Neural Networks for Prediction of Lipophilicity in ALOGPS 2.1 Program , 2002, J. Chem. Inf. Comput. Sci..

[24]  M. Mavrovouniotis Group contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solution , 1990, Biotechnology and bioengineering.

[25]  W. Richards Computer-aided drug design , 1994 .

[26]  Christoph Helma lazar: Lazy Structure–Activity Relationships for Toxicity Prediction , 2005 .

[27]  Hao Zhu,et al.  Estimation of the Aqueous Solubility of Organic Molecules by the Group Contribution Approach , 2001, J. Chem. Inf. Comput. Sci..

[28]  Alexandre Varnek,et al.  Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures , 2005, J. Comput. Aided Mol. Des..

[29]  Dan C. Fara,et al.  "In Silico" Design of New Uranyl Extractants Based on Phosphoryl-Containing Podands: QSPR Studies, Generation and Screening of Virtual Combinatorial Library, and Experimental Tests , 2004, J. Chem. Inf. Model..

[30]  Alexandre Varnek,et al.  Correlation of blood-brain penetration using structural descriptors. , 2006, Bioorganic & medicinal chemistry.

[31]  Igor I. Baskin,et al.  Prediction of Physical Properties of Organic Compounds Using Artificial Neural Networks within the Substructure Approach , 2001 .

[32]  Erik Johansson,et al.  Regression- and Projection-Based Approaches in Predictive Toxicology , 2005 .

[33]  A. Hinchliffe,et al.  Computer-aided drug design 2001–2003 , 2004 .

[34]  Mark T. D. Cronin,et al.  Toxicological Information for Use in Predictive Modeling: Quality, Sources, and Databases , 2005 .

[35]  Gilles Klopman,et al.  Computer Aided Olive Oil-Gas Partition Coefficient Calculations , 1997, J. Chem. Inf. Comput. Sci..

[36]  A. M. Rozen,et al.  Dependence of the extraction ability of organic compounds on their structure , 1996 .

[37]  J. Szymanowski,et al.  Structure-activity relationships for hydroxyoxime metal extractants , 2007 .

[38]  C. Rabbe,et al.  MOLECULAR MODELING STUDY OF URANYL NITRATE EXTRACTION WITH MONOAMIDES II. MOLECULAR MECHANICS AND LIPOPHILICITY CALCULATIONS. STRUCTURE-ACTIVITY RELATIONSHIPS , 1999 .