Solution structure of an atypical WW domain in a novel β‐clam‐like dimeric form

[1]  Satoru Watanabe,et al.  Solution structure of the SWIRM domain of human histone demethylase LSD1. , 2006, Structure.

[2]  J. Forman-Kay,et al.  Structural determinants for high-affinity binding in a Nedd4 WW3* domain-Comm PY motif complex. , 2006, Structure.

[3]  Martin Gruebele,et al.  Engineering a β-sheet protein toward the folding speed limit , 2005 .

[4]  Martin Gruebele,et al.  Engineering a beta-sheet protein toward the folding speed limit. , 2005, The journal of physical chemistry. B.

[5]  V. Muñoz Faculty Opinions recommendation of Context-dependent contributions of backbone hydrogen bonding to beta-sheet folding energetics. , 2004 .

[6]  Philip E. Dawson,et al.  Context-dependent contributions of backbone hydrogen bonding to β-sheet folding energetics , 2004, Nature.

[7]  Peter Güntert,et al.  Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment , 2004, Journal of Structural and Functional Genomics.

[8]  P. Güntert Automated NMR structure calculation with CYANA. , 2004, Methods in molecular biology.

[9]  Ryan S. Udan,et al.  Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway , 2003, Nature Cell Biology.

[10]  Craig J. Thalhauser,et al.  Identification of histidine tautomers in proteins by 2D 1H/13C(delta2) one-bond correlated NMR. , 2003, Journal of the American Chemical Society.

[11]  Craig J. Thalhauser,et al.  Tautomerism, acid‐base equilibria, and H‐bonding of the six histidines in subtilisin BPN′ by NMR , 2003, Protein science : a publication of the Protein Society.

[12]  K. Wüthrich,et al.  Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS , 2002, Journal of biomolecular NMR.

[13]  D. Haber,et al.  salvador Promotes Both Cell Cycle Exit and Apoptosis in Drosophila and Is Mutated in Human Cancer Cell Lines , 2002, Cell.

[14]  Jason C. Crane,et al.  The folding mechanism of a -sheet: the WW domain1 , 2001 .

[15]  Krzysztof Sliwa,et al.  Functions of WW domains in the nucleus , 2001, FEBS letters.

[16]  M. Gruebele,et al.  The folding mechanism of a beta-sheet: the WW domain. , 2001, Journal of molecular biology.

[17]  T. Hunter,et al.  NeW Wrinkles for an Old Domain , 2000, Cell.

[18]  E. Bradshaw,et al.  Unusual 1H NMR chemical shifts support (His) C(epsilon) 1...O==C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Y. Matsuo,et al.  Structural genomics projects in Japan. , 2000, Progress in biophysics and molecular biology.

[20]  M. Macias,et al.  Structural analysis of WW domains and design of a WW prototype , 2000, Nature Structural Biology.

[21]  M. Gruebele,et al.  Mapping the transition state of the WW domain β-sheet , 2000 .

[22]  M. Sudol,et al.  The importance of being proline: the interaction of proline‐rich motifs in signaling proteins with their cognate domains , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[23]  M. Gruebele,et al.  Mapping the transition state of the WW domain beta-sheet. , 2000, Journal of molecular biology.

[24]  R. Koradia,et al.  Point-centered domain decomposition for parallel molecular dynamics simulation , 2000 .

[25]  H. M. Petrassi,et al.  Characterization of the structure and function of W --> F WW domain variants: identification of a natively unfolded protein that folds upon ligand binding. , 1999, Biochemistry.

[26]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[27]  Yasuhiko Yoshida,et al.  Cell‐free production and stable‐isotope labeling of milligram quantities of proteins , 1999, FEBS letters.

[28]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[29]  Jack Greenblatt,et al.  Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage λ N-Peptide/boxB RNA Complex , 1997 .

[30]  R. Durbin,et al.  Pfam: A comprehensive database of protein domain families based on seed alignments , 1997, Proteins.

[31]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[32]  M. Billeter,et al.  The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules , 1996, Journal of biomolecular NMR.

[33]  J. Chernoff,et al.  The Ste20-like Protein Kinase, Mst1, Dimerizes and Contains an Inhibitory Domain* , 1996, The Journal of Biological Chemistry.

[34]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[35]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[36]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[37]  M Nilges,et al.  Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. , 1995, Journal of molecular biology.

[38]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[39]  A. Bairoch,et al.  The SWISS-PROT protein sequence data bank. , 1991, Nucleic acids research.