State Convergence of Passive Nonlinear Systems With an $L^{2}$ Input

We show that the state of a strictly output passive system with an L 2 input converges to zero. The result is applied to the disturbance rejection problem (with reference signal zero), where the disturbance can be decomposed into a finite superposition of sine waves of arbitrary but known frequencies and an L 2 signal. Using an LTI controller, constructed based on the internal model principle, the state trajectories of the plant (and hence also the error signal) converge to zero.

[1]  R. Ruth,et al.  Stability of dynamical systems , 1988 .

[2]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[3]  Andrew R. Teel,et al.  Asymptotic convergence from Lp stability , 1999, IEEE Trans. Autom. Control..

[4]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[5]  J. P. Lasalle The stability of dynamical systems , 1976 .

[6]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[7]  Eduardo D. Sontag A remark on the converging-input converging-state property , 2003, IEEE Trans. Autom. Control..

[8]  Hartmut Logemann,et al.  Asymptotic Behaviour of Nonlinear Systems , 2004, Am. Math. Mon..

[9]  Romeo Ortega,et al.  Some Applications and Extensions of Interconnection and Damping Assignment Passivity – Based Control , 2003 .

[10]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[11]  Andrew R. Teel,et al.  iISS gain of dissipative systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[12]  Arjan van der Schaft,et al.  Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..

[13]  Eugene P. Ryan Remarks on the L/sup p/-input converging-state property , 2005, IEEE Transactions on Automatic Control.

[14]  A. Isidori Nonlinear Control Systems , 1985 .

[15]  George Weiss,et al.  Admissible observation operators for linear semigroups , 1989 .