Effect of end milling, grinding and tartaric-sulfuric anodizing on the fatigue behavior of AA7050 alloy

[1]  P. Aristimuño,et al.  Roughness maps to determine the optimum process window parameters in face milling , 2022, International Journal of Mechanical Sciences.

[2]  Chuanzhen Huang,et al.  Effect of Machined Surface Integrity on Fatigue Performance of Metal Workpiece: A Review , 2021, Chinese Journal of Mechanical Engineering.

[3]  Zhitong Chen,et al.  Study of the effect of surface roughness on fatigue strength of GH4169 based on indirect evaluation of the notch root radius , 2021 .

[4]  Shujuan Li,et al.  Modeling and Analysis of Micro Surface Topography from Ball-End Milling in a Trochoidal Milling Mode , 2021, Micromachines.

[5]  H. Terryn,et al.  A Review on Anodizing of Aerospace Aluminum Alloys for Corrosion Protection , 2020, Coatings.

[6]  N. Jouini,et al.  Influence of surface integrity on fatigue life of bearing rings finished by precision hard turning and grinding , 2020 .

[7]  Yaoyao Shi,et al.  Study on avoiding the knife marks of the blade after polishing by flap disc , 2019, The International Journal of Advanced Manufacturing Technology.

[8]  E. Pessard,et al.  A probabilistic approach to study the effect of machined surface states on HCF behavior of a AA7050 alloy , 2018, International Journal of Fatigue.

[9]  A. Clare,et al.  The influence of shot peening on the fatigue response of Ti-6Al-4V surfaces subject to different machining processes , 2018, International Journal of Fatigue.

[10]  Xun Li,et al.  Influences of milling and grinding on machined surface roughness and fatigue behavior of GH4169 superalloy workpieces , 2017, Chinese Journal of Aeronautics.

[11]  Victor Godreau Extraction des connaissances à partir des données de la surveillance de l'usinage , 2017 .

[12]  Shenmin Zhang,et al.  Study on surface defects in five-axis ball-end milling of tool steel , 2017 .

[13]  Erembert Nizery Amorçage et propagation des fissures de fatigue dans les alliages d'aluminium 2050-T8 et 7050-T7451 , 2015 .

[14]  Claire Lartigue,et al.  Realistic simulation of surface defects in five-axis milling using the measured geometry of the tool , 2014 .

[15]  C. Mabru,et al.  Fatigue Life Model for 7050 Chromic Anodized Aluminium Alloy , 2013 .

[16]  Sangshik Kim,et al.  S-N Fatigue Behavior of Anodized 7050-T7451 Produced in Different Electrolytes , 2012, Metallurgical and Materials Transactions A.

[17]  S. Agnew,et al.  Fatigue crack surface crystallography near crack initiating particle clusters in precipitation hardened legacy and modern Al–Zn–Mg–Cu alloys , 2011 .

[18]  Majid Shahzad Influence de la rugosité et des traitements d’anodisation sur la tenue en fatigue des alliages d’aluminium aéronautiques 2214 et 7050 , 2011 .

[19]  Catherine Mabru,et al.  Influence of surface treatments on fatigue life of Al 7010 alloy , 2010 .

[20]  Bård Wathne Tveiten,et al.  Surface roughness characterization for fatigue life predictions using finite element analysis , 2008 .

[21]  J. Earthman,et al.  Surface Characterization of 7075-T73 Aluminum Exposed to Anodizing Pretreatment Solutions , 2008, Journal of Materials Engineering and Performance.

[22]  M. Estrems,et al.  A study of back cutting surface finish from tool errors and machine tool deviations during face milling , 2008 .

[23]  Junlin Li,et al.  Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys , 2007 .

[24]  David K. Aspinwall,et al.  The effect of machined topography and integrity on fatigue life , 2004 .

[25]  Sandrine Brunet,et al.  Influence des contraintes residuelles induites par usinage sur la tenue en fatigue des materiaux metalliques aeronautiques , 1991 .

[26]  Alexander M. Mood,et al.  A Method for Obtaining and Analyzing Sensitivity Data , 1948 .