TYPE Ia SUPERNOVA RATE MEASUREMENTS TO REDSHIFT 2.5 FROM CANDELS: SEARCHING FOR PROMPT EXPLOSIONS IN THE EARLY UNIVERSE

The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ∼0.25 deg2 with ∼900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z ∼ 2.5. We classify ∼24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only ∼3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is , consistent with a delay time distribution that follows a simple t−1 power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions—though further analysis and larger samples will be needed to examine that suggestion.

[1]  R. G. Izzard,et al.  Theoretical uncertainties of the Type Ia supernova rate , 2014, 1401.2895.

[2]  S. B. Cenko,et al.  TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE , 2013, 1310.3495.

[3]  J. Hjorth,et al.  Spectroscopic identification of a redshift 1.55 supernova host galaxy from the Subaru Deep Field Supernova Survey , 2012, 1211.2208.

[4]  R. Foley,et al.  CLASSIFYING SUPERNOVAE USING ONLY GALAXY DATA , 2013, 1309.2630.

[5]  A. Fontana,et al.  A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.

[6]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[7]  Armin Rest,et al.  COLOR DISPERSION AND MILKY-WAY-LIKE REDDENING AMONG TYPE Ia SUPERNOVAE , 2013, 1306.4050.

[8]  Peter Garnavich,et al.  THE DISCOVERY OF THE MOST DISTANT KNOWN TYPE Ia SUPERNOVA AT REDSHIFT 1.914 , 2013, 1304.0768.

[9]  G. Nelemans,et al.  Single degenerate supernova type Ia progenitors - Studying the influence of different mass retention efficiencies , 2013, 1302.2629.

[10]  W. Hillebrandt,et al.  On the brightness distribution of type Ia supernovae from violent white dwarf mergers , 2012, 1209.0645.

[11]  Dan Maoz,et al.  Discovery of 90 Type Ia supernovae among 700 000 Sloan spectra: the Type Ia supernova rate versus galaxy mass and star formation rate at redshift ∼0.1 , 2012, 1209.0008.

[12]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[13]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[14]  J. Hjorth,et al.  THE DWARF STARBURST HOST GALAXY OF A TYPE Ia SUPERNOVA AT z = 1.55 FROM CANDELS , 2012, 1210.3053.

[15]  Nobuyuki Kawai,et al.  Death of Massive Stars: Supernovae and Gamma-Ray Bursts , 2012 .

[16]  A. Gal-yam Luminous Supernovae , 2012, Science.

[17]  Adam G. Riess,et al.  THE EXTENDED HUBBLE SPACE TELESCOPE SUPERNOVA SURVEY: THE RATE OF CORE COLLAPSE SUPERNOVAE TO z ∼ 1 , 2012, 1208.0342.

[18]  J. Sollerman,et al.  The Rate of Supernovae at Redshift 0.1 − 1.0 : the Stockholm VIMOS Supernova Survey IV , 2012, 1206.6897.

[19]  A. Efstathiou,et al.  CORE-COLLAPSE SUPERNOVAE MISSED BY OPTICAL SURVEYS , 2012, 1206.1314.

[20]  J. Neill,et al.  EVOLUTION IN THE VOLUMETRIC TYPE Ia SUPERNOVA RATE FROM THE SUPERNOVA LEGACY SURVEY , 2012, 1206.0665.

[21]  David O. Jones,et al.  A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS , 2012, 1201.2470.

[22]  Filippo Mannucci,et al.  Type-Ia Supernova Rates and the Progenitor Problem: A Review , 2011, Publications of the Astronomical Society of Australia.

[23]  D. Elbaz,et al.  GOODS-HERSCHEL AND CANDELS: THE MORPHOLOGIES OF ULTRALUMINOUS INFRARED GALAXIES AT z ∼ 2 , 2011, 1110.4057.

[24]  K. Dawson,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. VI. THE VOLUMETRIC TYPE Ia SUPERNOVA RATE , 2011, 1110.6442.

[25]  John E. Krist,et al.  20 years of Hubble Space Telescope optical modeling using Tiny Tim , 2011 .

[26]  O. Lahav,et al.  THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.

[27]  N. Soker,et al.  A circumbinary disc in the final stages of common envelope and the core-degenerate scenario for Type Ia supernovae , 2011, 1105.5698.

[28]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[29]  M. Fukugita,et al.  Supernovae in the Subaru Deep Field: the rate and delay-time distribution of Type Ia supernovae out to redshift 2 , 2011, 1102.0005.

[30]  Alison L. Coil,et al.  THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD , 2011, 1101.4018.

[31]  J. Schaye,et al.  The effect of variations in the input physics on the cosmic distribution of metals predicted by simulations , 2011, 1101.3550.

[32]  V. Villar,et al.  UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. I. MULTI-WAVELENGTH PHOTOMETRY AND SPECTRAL ENERGY DISTRIBUTIONS , 2011, 1101.3308.

[33]  S. B. Cenko,et al.  THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES , 2010, 1011.4959.

[34]  T. Thompson ACCELERATING COMPACT OBJECT MERGERS IN TRIPLE SYSTEMS WITH THE KOZAI RESONANCE: A MECHANISM FOR “PROMPT” TYPE Ia SUPERNOVAE, GAMMA-RAY BURSTS, AND OTHER EXOTICA , 2010, 1011.4322.

[35]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[36]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[37]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.

[38]  M. Nonino,et al.  A DETAILED STUDY OF PHOTOMETRIC REDSHIFTS FOR GOODS-SOUTH GALAXIES , 2010, 1009.3504.

[39]  S. Rodney,et al.  REVISED SUPERNOVA RATES FROM THE IfA DEEP SURVEY , 2010, 1008.4573.

[40]  Ryan Chornock,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base , 2010, 1006.4611.

[41]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[42]  R. Nichol,et al.  Measurements Of The Rate Of Type Ia Supernovae At Redshift Less Than Or Similar To 0.3 From The Sloan Digital Sky Survey II Supernova Survey , 2010 .

[43]  D. Maoz,et al.  The supernova rate and delay time distribution in the Magellanic Clouds , 2010, 1003.3031.

[44]  D. Vanbeveren,et al.  The delay-time distribution of Type Ia supernovae: a comparison between theory and observation , 2010, 1003.2491.

[45]  A. Riess,et al.  EMPIRICAL DELAY-TIME DISTRIBUTIONS OF TYPE Ia SUPERNOVAE FROM THE EXTENDED GOODS/HUBBLE SPACE TELESCOPE SUPERNOVA SURVEY , 2010, 1002.2494.

[46]  R. Nichol,et al.  MEASUREMENTS OF THE RATE OF TYPE Ia SUPERNOVAE AT REDSHIFT ≲0.3 FROM THE SLOAN DIGITAL SKY SURVEY II SUPERNOVA SURVEY , 2010, 1001.4995.

[47]  L. Greggio The rates of type Ia supernovae – II. Diversity of events at low and high redshifts , 2010, 1001.3033.

[48]  Adam G. Riess,et al.  TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD , 2009, 0910.5597.

[49]  B. Garilli,et al.  THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE , 2009 .

[50]  J. Rhoads,et al.  PROMPT Ia SUPERNOVAE ARE SIGNIFICANTLY DELAYED , 2009, 0909.4293.

[51]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[52]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[53]  Zhanwen Han,et al.  EVOLVING TO TYPE Ia SUPERNOVAE WITH SHORT DELAY TIMES , 2009, 0906.4148.

[54]  J. Trump,et al.  THE COSMOS ACTIVE GALACTIC NUCLEUS SPECTROSCOPIC SURVEY. I. XMM-NEWTON COUNTERPARTS , 2009 .

[55]  Chris L. Fryer,et al.  RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE , 2009, 0904.3108.

[56]  Ricardo Covarrubias,et al.  THE HE-RICH CORE-COLLAPSE SUPERNOVA 2007Y: OBSERVATIONS FROM X-RAY TO RADIO WAVELENGTHS , 2009, 0902.0609.

[57]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[58]  M. Dickinson,et al.  BALANCING THE ENERGY BUDGET BETWEEN STAR FORMATION AND ACTIVE GALACTIC NUCLEI IN HIGH-REDSHIFT INFRARED LUMINOUS GALAXIES , 2008, 0812.2927.

[59]  L. Cowie,et al.  A Highly Complete Spectroscopic Survey of the GOODS-N Field , 2008, 0812.2481.

[60]  E. Ofek,et al.  The rate of Type Ia supernovae at z ≈ 0.2 from SDSS-I overlapping fields , 2008, 0805.1922.

[61]  L. Strolger,et al.  The Extended HST Supernova Survey: The Rate of SNe Ia at z > 1.4 Remains Low , 2008, 0803.1130.

[62]  J. Frieman,et al.  Dark Energy and the Accelerating Universe , 2008, 0803.0982.

[63]  S. Valenti,et al.  Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS) , 2007, 0710.3763.

[64]  K. Dawson,et al.  A New Determination of the High-Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys , 2007, 0710.3120.

[65]  K. Nomoto,et al.  THE ROLE OF TYPE Ia SUPERNOVAE IN CHEMICAL EVOLUTION. I. LIFETIME OF TYPE Ia SUPERNOVAE AND METALLICITY EFFECT , 2007, 0801.0215.

[66]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[67]  J. Prieto,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.

[68]  M. Fukugita,et al.  Supernovae in the Subaru Deep Field: an initial sample and Type Ia rate out to redshift 1.6 , 2007, 0707.0393.

[69]  Gijs Nelemans,et al.  Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries , 2007, astro-ph/0703578.

[70]  D. Calzetti,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007, astro-ph/0703095.

[71]  F. Mannucci,et al.  How many supernovae are we missing at high redshift , 2007, astro-ph/0702355.

[72]  D. Maoz,et al.  Supernovae in Low-Redshift Galaxy Clusters: The Type Ia Supernova Rate , 2006, astro-ph/0610228.

[73]  E. L. Wright,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[74]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[75]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[76]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview , 2006, astro-ph/0612305.

[77]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[78]  J. Dunlop,et al.  The evolution of the near-infrared galaxy luminosity function and colour bimodality up to z = 2 from the UKIDSS Ultra Deep Survey Early Data Release , 2006, astro-ph/0609287.

[79]  Max Pettini,et al.  A Spectroscopic Survey of Redshift 1.4 ≲ z ≲ 3.0 Galaxies in the GOODS-North Field: Survey Description, Catalogs, and Properties , 2006, astro-ph/0609296.

[80]  M. Sullivan,et al.  The Type Ia Supernova Rate at z ≈ 0.5 from the Supernova Legacy Survey , 2006, astro-ph/0605148.

[81]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[82]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[83]  L. Bildsten,et al.  The Type Ia Supernova Rate , 2005, astro-ph/0507456.

[84]  A. Fontana,et al.  The K20 survey. VII. The spectroscopic catalogue: spectral properties and evolution of the galaxy population ⋆, ⋆⋆ , 2005, astro-ph/0504248.

[85]  M. Nonino,et al.  The Great Observatories Origins Deep Survey VLT/VIMOS Spectroscopy in the GOODS-South Field , 2005, 0802.2930.

[86]  T. Bulik,et al.  New Constraints on Type Ia Supernova Progenitor Models , 2005, astro-ph/0502196.

[87]  T. Treu,et al.  Keck Spectroscopy of Distant GOODS Spheroidal Galaxies: Downsizing in a Hierarchical Universe , 2005, astro-ph/0502028.

[88]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[89]  S. Ravindranath,et al.  The Hubble Higher z Supernova Search: Supernovae to z ≈ 1.6 and Constraints on Type Ia Progenitor Models , 2004, astro-ph/0406546.

[90]  C. Conselice,et al.  High-Redshift Supernova Rates , 2004, astro-ph/0406547.

[91]  J. Beaulieu,et al.  Type Ia supernova rate at a redshift of ~;0.1 , 2004, astro-ph/0405211.

[92]  J. Newman,et al.  The Team Keck Treasury Redshift Survey of the GOODS-North Field , 2004, astro-ph/0401353.

[93]  S. M. Fall,et al.  The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging , 2003, astro-ph/0309105.

[94]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[95]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[96]  I. Hook,et al.  Accepted for publication in The Astrophysical Journal LPNHE 02-02 The distant Type Ia supernova rate , 2002 .

[97]  W. Hillebrandt,et al.  Type IA Supernova Explosion Models , 2000, astro-ph/0006305.

[98]  D. Hogg,et al.  Caltech Faint Galaxy Redshift Survey. X. A Redshift Survey in the Region of the Hubble Deep Field North , 1999, astro-ph/9912048.

[99]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[100]  I. Hachisu,et al.  A Wide Symbiotic Channel to Type Ia Supernovae , 1999, astro-ph/9902304.

[101]  R. Hook,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998, astro-ph/9808087.

[102]  K. Nomoto,et al.  To appear in the Astrophysical Journal, Letter Preprint typeset using L ATEX style emulateapj LOW-METALLICITY INHIBITION OF TYPE IA SUPERNOVAE AND GALACTIC AND COSMIC CHEMICAL EVOLUTION , 1998 .

[103]  M. Valle,et al.  On the evolution of the cosmic supernova rates , 1998, astro-ph/9803284.

[104]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[105]  Izumi Hachisu,et al.  A New Model for Progenitor Systems of Type Ia Supernovae , 1996 .

[106]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[107]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[108]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .