Germline de novo mutations in families with Mendelian cancer syndromes caused by defects in DNA repair

[1]  M. Stratton,et al.  Mutational landscape of normal epithelial cells in Lynch Syndrome patients , 2022, Nature Communications.

[2]  Patrick J. Short,et al.  Genetic and chemotherapeutic influences on germline hypermutation , 2022, Nature.

[3]  C. Steele,et al.  An overview of mutational and copy number signatures in human cancer , 2022, The Journal of pathology.

[4]  M. Christie,et al.  Germline MBD4 deficiency causes a multi-tumor predisposition syndrome , 2022, American journal of human genetics.

[5]  Shalini Ojha,et al.  The natural history of ataxia-telangiectasia (A-T): A systematic review , 2022, PloS one.

[6]  M. Stratton,et al.  Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells , 2021, Nature Communications.

[7]  M. Stratton,et al.  Increased somatic mutation burdens in normal human cells due to defective DNA polymerases , 2021, Nature Genetics.

[8]  Emily F. Calderbank,et al.  Clonal dynamics of haematopoiesis across the human lifespan , 2021, Nature.

[9]  M. Stratton,et al.  Somatic mutation landscapes at single-molecule resolution , 2021, Nature.

[10]  M. Ababou,et al.  Bloom syndrome and the underlying causes of genetic instability. , 2021, Molecular genetics and metabolism.

[11]  Thomas M. Keane,et al.  Twelve years of SAMtools and BCFtools , 2020, GigaScience.

[12]  M. Stratton,et al.  The mutational landscape of human somatic and germline cells , 2020, Nature.

[13]  A. Gonzalez-Perez,et al.  The evolution of hematopoietic cells under cancer therapy , 2020, Nature Communications.

[14]  Stuart M. Gardos,et al.  Cancer therapy shapes the fitness landscape of clonal hematopoiesis , 2020, Nature Genetics.

[15]  T. Druley,et al.  The evolutionary dynamics and fitness landscape of clonal hematopoiesis , 2020, Science.

[16]  B. Ebert,et al.  Clonal hematopoiesis in human aging and disease , 2019, Science.

[17]  E. Cuppen,et al.  5-Fluorouracil treatment induces characteristic T>G mutations in human cancer , 2019, Nature Communications.

[18]  Eric R. Wolf,et al.  Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway , 2019, Nature Communications.

[19]  Peter J. Campbell,et al.  Somatic mutant clones colonize the human esophagus with age , 2018, Science.

[20]  P. A. Futreal,et al.  PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy , 2018, Cell stem cell.

[21]  M. Stratton,et al.  The landscape of somatic mutation in normal colorectal epithelial cells , 2018, Nature.

[22]  Peter J. Campbell,et al.  Population dynamics of normal human blood inferred from somatic mutations , 2018, Nature.

[23]  Brent S. Pedersen,et al.  Overlooked roles of DNA damage and maternal age in generating human germline mutations , 2018, Proceedings of the National Academy of Sciences.

[24]  Daniel L. Vera,et al.  Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq , 2018, Nature Protocols.

[25]  R. Levine,et al.  Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. , 2018, Cell stem cell.

[26]  Hannes P. Eggertsson,et al.  Parental influence on human germline de novo mutations in 1,548 trios from Iceland , 2017, Nature.

[27]  L. Alexandrov,et al.  Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas , 2017, The Journal of pathology.

[28]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[29]  C. Fauth,et al.  A novel germline POLE mutation causes an early onset cancer prone syndrome mimicking constitutional mismatch repair deficiency , 2016, Familial Cancer.

[30]  Mark E. Wadsworth,et al.  Evaluating the necessity of PCR duplicate removal from next-generation sequencing data and a comparison of approaches , 2016, BMC Bioinformatics.

[31]  J. Roach,et al.  Parent-of-origin-specific signatures of de novo mutations , 2016, Nature Genetics.

[32]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, bioRxiv.

[33]  Arthur Wuster,et al.  Timing, rates and spectra of human germline mutation , 2015, Nature Genetics.

[34]  S. Meyer,et al.  Fanconi anaemia: genetics, molecular biology, and cancer – implications for clinical management in children and adults , 2015, Clinical genetics.

[35]  J. Shendure,et al.  A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer , 2015, Nature Genetics.

[36]  M. Hurles,et al.  The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline , 2015, Nature Communications.

[37]  Jakob Grove,et al.  Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios , 2015, Nature Communications.

[38]  Ross M. Fraser,et al.  A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness , 2014, PLoS genetics.

[39]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[40]  Arthur Wuster,et al.  DeNovoGear: de novo indel and point mutation discovery and phasing , 2013, Nature Methods.

[41]  Peter Donnelly,et al.  Germline mutations in the proof-reading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas , 2012, Nature Genetics.

[42]  S. Steinberg,et al.  Rate of de novo mutations, father’s age, and disease risk , 2012, Nature.

[43]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[44]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[45]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[46]  Oliver Sieber,et al.  A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21 , 2007, Nature Genetics.

[47]  Harry Campbell,et al.  Generation Scotland: the Scottish Family Health Study; a new resource for researching genes and heritability , 2006, BMC Medical Genetics.

[48]  Alison L. Livingston,et al.  Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors , 2002, Nature Genetics.

[49]  M. Koike,et al.  Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer , 1997, Nature Genetics.

[50]  R. Fleischmann,et al.  Mutations of two P/WS homologues in hereditary nonpolyposis colon cancer , 1994, Nature.

[51]  R. Fleischmann,et al.  Mutation of a mutL homolog in hereditary colon cancer. , 1994, Science.

[52]  D. Ward,et al.  Mutation in the DNA mismatch repair gene homologue hMLH 1 is associated with hereditary non-polyposis colon cancer , 1994, Nature.

[53]  N. Copeland,et al.  The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer , 1993, Cell.