Design of an Auger-Suppressed Unipolar HgCdTe NBνN Photodetector

A unipolar mercury cadmium telluride (HgCdTe) NBνN infrared (IR) device architecture is analyzed by physics-based numerical device simulations. The device structure is predicted to suppress Shockley–Read–Hall (SRH) and Auger generation–recombination (G–R) processes, while also providing a simplified fabrication process by eliminating p-type doping requirements. The performance characteristics of mid- and long-wavelength infrared (MWIR: λc = 5 μm; LWIR: λc = 12 μm) NBνN devices are calculated and compared with those of nBn and double-layer planar heterostructure (DLPH) devices. Theoretical dark current density (Jdark) values of the MWIR and LWIR NBνN devices are lower by an order of magnitude or more for temperatures between 50 K and 225 K. Calculated peak detectivity (D*) values of 6.01 × 1014 cm Hz0.5/W to 2.36 × 1010 cm Hz0.5/W for temperatures from 95 K to 225 K, and 2.37 × 1014 cm Hz0.5/W to 2.27 × 1011 cm Hz0.5/W for temperatures from 50 K to 95 K are observed for MWIR and LWIR NBνN structures, respectively. A component of the NBνN structure, embodied in a unipolar MWIR nBn device, is also fabricated to experimentally demonstrate selective carrier extraction.

[1]  D. Edwall,et al.  p-type arsenic doping of Hg1−xCdxTe by molecular beam epitaxy , 1997 .

[2]  G. Jakob,et al.  Hall effect in laser ablated Co2(Mn,Fe)Si thin films , 2008, 0809.4978.

[3]  Majid Zandian,et al.  MBE HgCdTe Technology: A Very General Solution to IR Detection, Described by “Rule 07”, a Very Convenient Heuristic , 2008 .

[4]  G. Destefanis,et al.  Electrical doping of HgCdTe by ion implantation and heat treatment , 1988 .

[5]  L. O. Bubulac,et al.  Behavior of implantation‐induced defects in HgCdTe , 1982 .

[6]  G. M. Williams,et al.  Numerical simulation of HgCdTe detector characteristics , 1995 .

[7]  A. Chen,et al.  MBE growth and characterization of in situ arsenic doped HgCdTe , 1998 .

[8]  Jamie D. Phillips,et al.  Parameter extraction of HgCdTe infrared photodiodes exhibiting Auger suppression , 2009 .

[9]  J. R. Pedrazzani,et al.  Use of epitaxial unipolar barriers to block surface leakage currents in photodetectors , 2010 .

[10]  J. Phillips,et al.  Predicted Performance Improvement of Auger-Suppressed HgCdTe Photodiodes and $p\hbox{-}n$ Heterojunction Detectors , 2011, IEEE Transactions on Electron Devices.

[11]  K. J. Riley,et al.  Background and temperature dependent current‐voltage characteristics of HgCdTe photodiodes , 1982 .

[12]  J. Bajaj,et al.  MWIR DLPH HgCdTe photodiode performance dependence on substrate material , 1998 .

[13]  G. Wicks,et al.  nBn detector, an infrared detector with reduced dark current and higher operating temperature , 2006 .

[14]  J. Jensen,et al.  Molecular-beam epitaxial growth and high-temperature performance of HgCdTe midwave infrared detectors , 2002 .

[15]  Jaroslaw Rutkowski,et al.  Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes , 2001 .

[16]  L. O. Bubulac,et al.  Defects, diffusion and activation in ion implanted HgCdTe , 1988 .

[17]  E. Bellotti,et al.  Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors , 2006, IEEE Journal of Quantum Electronics.

[18]  W. Scott Electron Mobility in Hg1−xCdxTe , 1972 .

[19]  J. R. Pedrazzani,et al.  Use of nBn structures to suppress surface leakage currents in unpassivated InAs infrared photodetectors , 2008 .

[20]  Jamie D. Phillips,et al.  Design and Modeling of HgCdTe nBn Detectors , 2011 .

[21]  D. F. Weirauch,et al.  High-Operating-Temperature MWIR Detector Diodes , 2008 .

[22]  J. Piotrowski,et al.  Numerical analysis of longwavelength extracted photodiodes , 1993 .

[23]  A. Syllaios,et al.  Minority carrier lifetime in mercury cadmium telluride , 1993 .