R-trees and the Bieri-Neumann-Strebel invariant
暂无分享,去创建一个
Let $G$ be a finitely generated group. We give a new characterization of its Bieri-Neumann-Strebel invariant $\Sigma (G)$, in terms of geometric abelian actions on ${\bold R}$-trees. We provide a proof of Brown's characterization of $\Sigma (G)$ by exceptional abelian actions of $G$, using geometric methods.
[1] J. Morgan,et al. Group Actions On R‐Trees , 1987 .
[2] R. Bieri,et al. A geometric invariant of discrete groups , 1987 .
[3] Gilbert Levitt. 1-formes fermées singulières et groupe fondamental , 1987 .