Solution of matrix Riccati differential equation for nonlinear singular system using genetic programming

AbstractIn this paper, we propose a novel approach to find the solution of the matrix Riccati differential equation (MRDE) for nonlinear singular systems using genetic programming (GP). The goal is to provide optimal control with reduced calculation effort by comparing the solutions of the MRDE obtained from the well known traditional Runge Kutta (RK) method to those obtained from the GP method. We show that the GP approach to the problem is qualitatively better in terms of accuracy. Numerical examples are provided to illustrate the proposed method.

[1]  Conor Ryan,et al.  Grammatical evolution , 2007, GECCO '07.

[2]  Stephen P. Banks,et al.  Lagrangian manifolds and asymptotically optimal stabilizing feedback control , 2001, Syst. Control. Lett..

[3]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .

[4]  John R. Koza,et al.  Genetic Programming as a Darwinian Invention Machine , 1999, EuroGP.

[5]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[6]  Mark J. Willis,et al.  Steady-state modelling of chemical process systems using genetic programming , 1997 .

[7]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[8]  John R. Koza,et al.  Genetic Programming III: Darwinian Invention & Problem Solving , 1999 .

[9]  S. Banks,et al.  Optimal control and stabilization for nonlinear systems , 1992 .

[10]  Lishan Kang,et al.  Evolutionary Modeling of Systems of Ordinary Differential Equations with Genetic Programming , 2000, Genetic Programming and Evolvable Machines.

[11]  Michael O'Neill,et al.  Grammatical evolution - evolutionary automatic programming in an arbitrary language , 2003, Genetic programming.

[12]  S. Campbell Singular Systems of Differential Equations , 1980 .

[13]  C. Choi,et al.  A survey of numerical methods for solving matrix Riccati differential equations , 1990, IEEE Proceedings on Southeastcon.

[14]  Mohsen Razzaghi A Schur method for the solution of the matrix Riccati equation , 1997 .

[15]  Pagavathigounder Balasubramaniam,et al.  Optimal control for linear system using genetic programming , 2009 .

[16]  David J. Montana,et al.  Evolving control laws for a network of traffic signals , 1996 .

[17]  D. Vaughan,et al.  A negative exponential solution for the matrix Riccati equation , 1969 .

[18]  Mohsen Razzaghi,et al.  Solution of the matrix Riccati equation in optimal control , 1978, Inf. Sci..

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  S. Campbell Singular systems of differential equations II , 1980 .

[21]  Conor Ryan,et al.  Survey Of Evolutionary Automatic Programming , 2003 .

[22]  Dimitrios I. Fotiadis,et al.  Artificial neural networks for solving ordinary and partial differential equations , 1997, IEEE Trans. Neural Networks.

[23]  Ken Sharman,et al.  Evolving signal processing algorithms by genetic programming , 1995 .

[24]  Stephen P. Banks,et al.  Nonlinear optimal tracking control with application to super-tankers for autopilot design , 2004, Autom..

[25]  J. W.,et al.  A Approved for Public Release , 1996 .

[26]  Stephen L. Campbell,et al.  Solvability of General Differential Algebraic Equations , 1995, SIAM J. Sci. Comput..

[27]  N. Feedback stabilization of control systems described by a class of nonlinear differential-algebraic equations , 2002 .

[28]  Stephen P. Banks Exact boundary controllability and optimal control for a generalised Korteweg de Vries equation , 2001 .

[29]  Conor Ryan,et al.  Grammatical Evolution , 2001, Genetic Programming Series.

[30]  P. Balasubramaniam,et al.  Optimal control for linear singular system using genetic programming , 2007, Appl. Math. Comput..

[31]  Akira Ichikawa,et al.  Quadratic control for linear periodic systems , 1988 .

[32]  Isaac E. Lagaris,et al.  Solving differential equations with genetic programming , 2006, Genetic Programming and Evolvable Machines.

[33]  Milos Tomic,et al.  Analytic solution of the Riccati equation for the homing missile linear-quadratic control problem , 1994 .

[34]  John R. Koza Genetic Programming III - Darwinian Invention and Problem Solving , 1999, Evolutionary Computation.

[35]  M. Razzaghi A computational solution for a Matrix Riccati differential equation , 1979 .

[36]  P. Balasubramaniam J. Abdul Samath and N. Kumaresan Neuro approach for solving matrix Riccati differential equations , 2007 .

[37]  J. Abdul Samath,et al.  Solution of matrix Riccati differential equation for the linear quadratic singular system using neural networks , 2006, Appl. Math. Comput..

[38]  Dominic P. Searson,et al.  Chemical process controller design using genetic programming , 1998 .

[39]  P. Khargonekar,et al.  An algebraic Riccati equation approach to H ∞ optimization , 1988 .

[40]  F. Lewis A survey of linear singular systems , 1986 .

[41]  David J. Murray-Smith,et al.  Nonlinear model structure identification using genetic programming , 1998 .

[42]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[43]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .