Tailored synthesis of anatase–brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV–Vis light

[1]  Lin Chen,et al.  TiO2 photocatalytic degradation and detoxification of cylindrospermopsin , 2015 .

[2]  K. Částková,et al.  Biphasic anatase-brookite nanoparticles prepared by sol–gel complex synthesis and their photocatalytic activity in hydrogen production , 2015 .

[3]  D. Dionysiou,et al.  High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO₂ photocatalyst for the removal of microcystin-LR under visible light irradiation. , 2014, Journal of hazardous materials.

[4]  Shan Cong,et al.  Brookite vs Anatase TiO2 in the Photocatalytic Activity for Organic Degradation in Water , 2014 .

[5]  D. Dionysiou,et al.  Degradation of cylindrospermopsin by using polymorphic titanium dioxide under UV–Vis irradiation , 2014 .

[6]  S. Pillai,et al.  UV and visible light activated TiO2 photocatalysis of 6-hydroxymethyl uracil, a model compound for the potent cyanotoxin cylindrospermopsin , 2014 .

[7]  Lianjun Liu,et al.  Silver-incorporated bicrystalline (anatase/brookite) TiO2 microspheres for CO2 photoreduction with water in the presence of methanol , 2013 .

[8]  Baozhu Tian,et al.  Tailored preparation of titania with controllable phases of anatase and brookite by an alkalescent hydrothermal route , 2013 .

[9]  Jimin Xie,et al.  Tunable synthesis of enhanced photodegradation activity of brookite/anatase mixed-phase titanium dioxide , 2013 .

[10]  Agatino Di Paola,et al.  Brookite, the Least Known TiO2 Photocatalyst , 2013 .

[11]  Soon-Chang Lee,et al.  Highly visible-light active nanoporous TiO2 photocatalysts for efficient solar photocatalytic applications , 2013 .

[12]  D. Dionysiou,et al.  Destruction of cyanobacterial toxin cylindrospermopsin by hydroxyl radicals and sulfate radicals using UV-254 nm activation of hydrogen peroxide, persulfate and peroxymonosulfate , 2013 .

[13]  Jun Pan,et al.  Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis , 2012 .

[14]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[15]  Soon-Chang Lee,et al.  Preparation and characterization of bicrystalline TiO2 photocatalysts with high crystallinity and large surface area , 2012 .

[16]  Baozhu Tian,et al.  Tartaric acid-assisted preparation and photocatalytic performance of titania nanoparticles with controllable phases of anatase and brookite , 2012, Journal of Materials Science.

[17]  S. Manorama,et al.  Viable method for the synthesis of biphasic TiO2 nanocrystals with tunable phase composition and enabled visible-light photocatalytic performance. , 2012, ACS applied materials & interfaces.

[18]  S. Castillo,et al.  Photocatalytic Degradation of Acetaldehyde by Sol-Gel TiO2 Nanoparticles: Effect of the Physicochemical Properties on the Photocatalytic Activity , 2011 .

[19]  Detlef W. Bahnemann,et al.  Novel (and better?) titania-based photocatalysts: Brookite nanorods and mesoporous structures , 2010 .

[20]  Tarek A. Kandiel,et al.  Tailored Titanium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts , 2010 .

[21]  W. Ho,et al.  Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. , 2009, Journal of hazardous materials.

[22]  Lang Sun,et al.  High-Quality Brookite TiO2 Flowers: Synthesis, Characterization, and Dielectric Performance , 2009 .

[23]  Jinlong Zhang,et al.  Preparation and characterization of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants , 2009 .

[24]  H. Fu,et al.  Synthesis and photocatalytic activity of stable nanocrystalline TiO(2) with high crystallinity and large surface area. , 2009, Journal of hazardous materials.

[25]  H. Fu,et al.  Preparation and Characterization of Stable Biphase TiO2 Photocatalyst with High Crystallinity, Large Surface Area, and Enhanced Photoactivity , 2008 .

[26]  S. Gialanella,et al.  Tailored Anatase/Brookite Nanocrystalline TiO2. The Optimal Particle Features for Liquid- and Gas-Phase Photocatalytic Reactions , 2007 .

[27]  Zhi Zheng,et al.  Low-temperature preparation of nanocrystalline TiO2 photocatalyst with a very large specific surface area , 2006 .

[28]  Masahiro Yoshimura,et al.  A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. , 2006, Angewandte Chemie.

[29]  Jaesung Song,et al.  Synthesis and photocatalytic properties of nano bi-crystalline titania of anatase and brookite by hydrolyzing TiOCl2 aqueous solution at low temperatures , 2005 .

[30]  H. Kisch,et al.  Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2 , 2004 .

[31]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[32]  M. Anpo,et al.  Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2 , 2003 .

[33]  S. Yamamoto,et al.  Fluorine-doping in titanium dioxide by ion implantation technique , 2003 .

[34]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[35]  Hiromichi Hayashi,et al.  Hydrothermal Synthesis of Brookite. , 1999 .

[36]  G. Tompsett,et al.  The Raman spectrum of brookite, TiO2 (Pbca, Z = 8) , 1995 .

[37]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[38]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[39]  I. Falconer,et al.  Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir , 1985, Applied and environmental microbiology.

[40]  F. P. Koffyberg,et al.  Interband Transitions of Semiconducting Oxides Determined from Photoelectrolysis Spectra. , 1979 .

[41]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .