Nanocomposite photonic glasses and confined structures optimizing Er3+-luminescent properties
暂无分享,去创建一个
A. Chiappini | C. Armellini | M. Ferrari | A. Chiasera | G. Nunzi Conti | S. Pelli | M. Mattarelli | Y. Jestin | L. Minati | M. Montagna | E. Moser | G. C. Righini | G. Speranza | C. Tosello
[1] Pieter G. Kik,et al. Erbium-Doped Optical-Waveguide Amplifiers on Silicon , 1998 .
[2] Jacobson,et al. Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity. , 1993, Physical review letters.
[3] C. Coutier,et al. Sol–gel thin film deposition and characterization of a new optically active compound: Er2Ti2O7 , 2001 .
[4] Kerry J. Vahala,et al. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process , 2005 .
[5] Chu,et al. Excitons in a II-VI semiconductor microcavity in the strong-coupling regime. , 1995, Physical review. B, Condensed matter.
[6] Vahid Sandoghdar,et al. Spontaneous emission of europium ions embedded in dielectric nanospheres. , 2002, Physical review letters.
[7] Eric M. Yeatman,et al. Sol-gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm , 1999 .
[8] Younes Messaddeq,et al. Sol-gel erbium-doped silica-hafnia planar and channel waveguides , 2003, SPIE OPTO.
[9] Kazumi Wada,et al. SiO2/TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method , 1999 .
[10] Jeroen Kalkman,et al. Selective excitation of erbium in silicon-infiltrated silica colloidal photonic crystals , 2004 .
[11] Polman,et al. Measuring and modifying the spontaneous emission rate of erbium near an interface. , 1995, Physical review letters.
[12] Takahiro Koyama,et al. Dielectric SiO2∕ZrO2 distributed Bragg reflectors for ZnO microcavities prepared by the reactive helicon-wave-excited-plasma sputtering method , 2006 .
[13] Gao-xiang Li,et al. Decay distribution of spontaneous emission from atoms in one-dimensional photonic crystal , 2004 .
[14] Claude Amra,et al. Spontaneous emission into planar multi-dielectric microcavities: Theoretical and experimental analysis of rare earth ion radiations , 1999 .
[15] Alessandro Chiasera,et al. Erbium-Activated Silica-Titania Planar Waveguides , 2003 .
[16] W. Miniscalco. Erbium-doped glasses for fiber amplifiers at 1500 nm , 1991 .
[17] Y. Okamura,et al. Measuring mode propagation losses of integrated optical waveguides: a simple method. , 1983, Applied optics.
[19] Jacques Mugnier,et al. Eu3+-doped microcavities fabricated by sol–gel process , 2001 .
[20] Chung-Hsin Lu,et al. Sol–gel synthesis and photoluminescent properties of cerium-ion doped yttrium aluminium garnet powders , 2002 .
[21] Guglielmo Lanzani,et al. Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors , 2006 .
[22] Di Wu,et al. Annealing and doping effects on structure and optical properties of sol–gel derived ZrO2 thin films , 2002 .
[23] R. S. Quimby,et al. Clustering in erbium‐doped silica glass fibers analyzed using 980 nm excited‐state absorption , 1994 .
[24] A. Chiappini,et al. Er3+/Yb3+-activated silica–titania planar waveguides for EDPWAs fabricated by rf-sputtering , 2003 .
[25] Michel Mortier,et al. Between glass and crystal: Glass–ceramics, a new way for optical materials , 2002 .
[26] Maurizio Ferrari,et al. Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics , 2002 .
[27] Stefano Pelli,et al. Erbium-activated monolithic silica xerogels and silica-titania planar waveguides: optical and spectroscopic characterization , 2001, SPIE OPTO.