Time-parallel solutions to differential equations via functional optimization

[1]  Aichi Chien,et al.  Registration for 3D Morphological Comparison of Brain Aneurysm Growth , 2011, ISVC.

[2]  Abdul Majid,et al.  Approximate solutions to Poisson-Boltzmann systems with Sobolev gradients , 2011, J. Comput. Phys..

[3]  Arthur W. Toga,et al.  The generation of tetrahedral mesh models for neuroanatomical MRI , 2011, NeuroImage.

[4]  Raúl Sánchez,et al.  Parallelization in time of numerical simulations of fully-developed plasma turbulence using the parareal algorithm , 2010, J. Comput. Phys..

[5]  Arthur W. Toga,et al.  Nonlinear Elasticity Registration and Sobolev Gradients , 2010, WBIR.

[6]  Robert J. Renka,et al.  Image segmentation with a Sobolev gradient method , 2009 .

[7]  Pierluigi Amodio,et al.  Parallel solution in time of ODEs: some achievements and perspectives , 2009 .

[8]  Charbel Farhat,et al.  A time‐parallel implicit method for accelerating the solution of non‐linear structural dynamics problems , 2009 .

[9]  D. Mujeeb,et al.  Recursive form of Sobolev gradient method for ODEs on long intervals , 2008, Int. J. Comput. Math..

[10]  Stefan Engblom,et al.  Parallel in Time Simulation of Multiscale Stochastic Chemical Kinetics , 2008, Multiscale Model. Simul..

[11]  Robert J. Renka,et al.  Constructing fair curves and surfaces with a Sobolev gradient method , 2004, Comput. Aided Geom. Des..

[12]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..

[13]  Martin J. Gander,et al.  A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations , 1999, Numer. Linear Algebra Appl..

[14]  W. T. Mahavier Solving Boundary Value Problems Numerically Using Steepest Descent In Sobolev Spaces , 1999 .

[15]  C. W. Gear,et al.  Parallel methods for ordinary differential equations , 1988 .

[16]  Harold S. Stone,et al.  Parallel Tridiagonal Equation Solvers , 1975, TOMS.

[17]  L. A. G. Dresel,et al.  Elementary Numerical Analysis , 1966 .

[18]  A. Iserles A First Course in the Numerical Analysis of Differential Equations: Gaussian elimination for sparse linear equations , 2008 .

[19]  J. C. Peterson,et al.  Combining the parareal algorithm and reduced order modeling for time dependent partial dierential equations , 2006 .

[20]  J. March Introduction to the Calculus of Variations , 1999 .