Coverage-driven dissociation of azobenzene on Cu(111): a route towards defined surface functionalization.
暂无分享,去创建一个
Karsten Reuter | Martin Willenbockel | Benjamin Stadtmüller | S. Soubatch | K. Reuter | R. Maurer | C. Bronner | P. Tegeder | M. Schulze | Reinhard J Maurer | B. Stadtmüller | Petra Tegeder | Serguei Soubatch | Christopher Bronner | Michael Schulze | F Stefan Tautz | M. Willenbockel | F. Stefan Tautz
[1] A. Camara,et al. Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury , 2011, Front. Physio..
[2] A. Tkatchenko,et al. Quantification of finite-temperature effects on adsorption geometries of π-conjugated molecules: Azobenzene/Ag(111) , 2013, 1405.3670.
[3] Alexandre Tkatchenko,et al. Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. , 2012, Physical review letters.
[4] A. Bondi. van der Waals Volumes and Radii , 1964 .
[5] Matt Probert,et al. First principles methods using CASTEP , 2005 .
[6] K. Reuter,et al. X-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries , 2014, Front. Physics.
[7] L. Wallden,et al. Low-energy electron diffraction from Cu(111): Subthreshold effect and energy-dependent inner potential; surface relaxation and metric distances between spectra , 1984 .
[8] D. P. Woodruff. Surface structure determination using x-ray standing waves , 2005 .
[9] Matthias Scheffler,et al. Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..
[10] J. Zegenhagen,et al. Surface structure determination with X-ray standing waves , 1993 .
[11] B. Delley,et al. Nitrogen adsorption and thin surface nitrides on Cu(111) from first-principles , 2007 .
[12] A. Tkatchenko,et al. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.
[13] G. Mercurio,et al. Adsorption height determination of nonequivalent C and O species of PTCDA on Ag(110) using x-ray standing waves , 2013 .
[14] W. Kuch,et al. Temperature, Surface, and Coverage-Induced Conformational Changes of Azobenzene Derivatives on Cu(001) , 2009 .
[15] Karsten Reuter,et al. Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions , 2009, 0909.2351.
[16] G. Whitesides,et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.
[17] D. P. Woodruff,et al. The local structure of the azobenzene/aniline reaction intermediate on TiO2(110) , 2013 .
[18] K. Reuter,et al. Stabilizing a molecular switch at solid surfaces: A density functional theory study of azobenzene on Cu(111), Ag(111), and Au(111) , 2009, 0903.1055.
[19] G. Mercurio. Study of molecule metal interfaces by means of the normal incidence x-ray standing wave technique , 2012 .
[20] A. Tkatchenko,et al. Quantitative Prediction of Molecular Adsorption: Structure and Binding of Benzene on Coinage Metals. , 2015, Physical review letters.
[21] Ulrike Diebold,et al. Reactivity of TiO2 rutile and anatase surfaces toward nitroaromatics. , 2010, Journal of the American Chemical Society.
[22] U. Diebold,et al. Photoemission Study of Azobenzene and Aniline Adsorbed on TiO2 Anatase (101) and Rutile (110) Surfaces , 2011 .