Silk foam terahertz waveguides

Silk foam-based terahertz waveguides are fabricated using lyophilisation and casting techniques. This work is motivated by the lack of biocompatible waveguides for low-loss guidance of THz for applications in remote sensing in biomedical and agro-alimentary industries.

[1]  Vadime Elisseeff,et al.  The silk roads : highways of culture and commerce , 2000 .

[2]  David L. Kaplan,et al.  Fabrication of Silk Microneedles for Controlled‐Release Drug Delivery , 2012 .

[3]  Chang-Seok Kim,et al.  Compensation of polarization-dependent loss in transmission fiber gratings by use of a Sagnac loop interferometer. , 2005, Optics letters.

[4]  L. Vicari Optical nonlinearity of water in oil microemulsion near percolation , 2000 .

[5]  Hyunmin Yi,et al.  Facile fabrication of gelatin‐based biopolymeric optical waveguides , 2009, Biotechnology and bioengineering.

[6]  Mark Cronin-Golomb,et al.  Bioactive silk protein biomaterial systems for optical devices. , 2008, Biomacromolecules.

[7]  David L. Kaplan,et al.  Metamaterial Silk Composites at Terahertz Frequencies , 2010, Advanced materials.

[8]  David L Kaplan,et al.  Silk-based biomaterials. , 2003, Biomaterials.

[9]  D. Kaplan,et al.  Integration of silk protein in organic and light-emitting transistors. , 2011, Organic electronics.

[10]  David L. Kaplan,et al.  Nano‐ and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films , 2008 .

[11]  R. Valluzzi,et al.  Silk I structure in Bombyx mori silk foams. , 1999, International journal of biological macromolecules.

[12]  P. Planken,et al.  Terahertz dielectric properties of polystyrene foam , 2002 .

[13]  David L Kaplan,et al.  Silk film biomaterials for cornea tissue engineering. , 2009, Biomaterials.

[14]  Shahid Masud,et al.  Efficient block size selection in H.264 video coding standard , 2004 .

[15]  E. Soheili Majd,et al.  In vitro effects of ascorbate and Trolox on the biocompatibility of dental restorative materials. , 2003, Biomaterials.

[16]  David L. Kaplan,et al.  Functionalized‐Silk‐Based Active Optofluidic Devices , 2010 .

[17]  Robert E. Miles,et al.  Terahertz frequency detection and identification of materials and objects , 2007 .

[18]  P. Ball Material witness: Why is boron so hard? , 2010, Nature materials.

[19]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[20]  M. Skorobogatiy,et al.  Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique. , 2010, Optics express.

[21]  Daniel R. Grischkowsky,et al.  Plastic ribbon THz waveguides , 2000 .

[22]  Bora Ung,et al.  Polymer microstructured optical fibers for terahertz wave guiding. , 2011, Optics express.

[23]  Derek Abbott,et al.  Porous fibers: a novel approach to low loss THz waveguides. , 2008, Optics express.

[24]  Hichem Guerboukha,et al.  Silk foam terahertz waveguides , 2015 .

[25]  Patrick Mounaix,et al.  Terahertz dielectric characterisation of polymethacrylimide rigid foam: the perfect sheer plate? , 2004 .

[26]  Michael C. McAlpine,et al.  Silk‐Based Conformal, Adhesive, Edible Food Sensors , 2012, Advanced materials.

[27]  D. Grischkowsky,et al.  Undistorted guided-wave propagation of subpicosecond terahertz pulses. , 2001, Optics letters.

[28]  Alexander Argyros,et al.  Transmission of terahertz radiation using a microstructured polymer optical fiber. , 2008, Optics letters.

[29]  David L. Kaplan,et al.  Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals , 2013, Scientific Reports.

[30]  Guo-Qiang Lo,et al.  Silicon Mach-Zehnder modulator of extinction ratio beyond 10dB at 10.0–12.5Gbps , 2011, 2011 37th European Conference and Exhibition on Optical Communication.