Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content

[1]  Philippe Horvath,et al.  Comparative analysis of CRISPR loci in lactic acid bacteria genomes. , 2009, International journal of food microbiology.

[2]  Inna Dubchak,et al.  Trends in Prokaryotic Evolution Revealed by Comparison of Closely Related Bacterial and Archaeal Genomes , 2008, Journal of bacteriology.

[3]  S. Hamada,et al.  Demonstration of Mother-to-Child Transmission of Streptococcus mutans Using Multilocus Sequence Typing , 2008, Caries Research.

[4]  J. Musser,et al.  Genome Sequence of a Lancefield Group C Streptococcus zooepidemicus Strain Causing Epidemic Nephritis: New Information about an Old Disease , 2008, PloS one.

[5]  I. Miklós,et al.  Dynamics of Genome Rearrangement in Bacterial Populations , 2008, PLoS genetics.

[6]  V. Kunin,et al.  CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea , 2008, Nature Reviews Microbiology.

[7]  L. Teng,et al.  Chromosomal inversion between rrn operons among Streptococcus mutans serotype c oral and blood isolates. , 2008, Journal of medical microbiology.

[8]  Philippe Horvath,et al.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus , 2007, Journal of bacteriology.

[9]  Philippe Horvath,et al.  Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus , 2007, Journal of bacteriology.

[10]  R. Geffers,et al.  Autoinducer-2-Regulated Genes in Streptococcus mutans UA159 and Global Metabolic Effect of the luxS Mutation , 2007, Journal of bacteriology.

[11]  F. Gamboa,et al.  Bacteriocins in S. mutans strains isolated from children with and without dental caries: biotypes and sensitivity to antibiotics. , 2008, Acta odontologica latinoamericana : AOL.

[12]  Yuji Nagata,et al.  GenomeMatcher: A graphical user interface for DNA sequence comparison , 2008, BMC Bioinformatics.

[13]  J. V. D. Ploeg,et al.  Genome sequence of Streptococcus mutans bacteriophage M102. , 2007 .

[14]  James M. Musser,et al.  Contribution of Exogenous Genetic Elements to the Group A Streptococcus Metagenome , 2007, PloS one.

[15]  J. Steele,et al.  Genotypic and phenotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggests frequent recombination and niche specificity. , 2007, Microbiology.

[16]  Tetsuya Hayashi,et al.  Extensive genomic diversity and selective conservation of virulence-determinants in enterohemorrhagic Escherichia coli strains of O157 and non-O157 serotypes , 2007, Genome Biology.

[17]  S. Hamada,et al.  Streptococcus mutans Clonal Variation Revealed by Multilocus Sequence Typing , 2007, Journal of Clinical Microbiology.

[18]  Ibtissem Grissa,et al.  CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats , 2007, Nucleic Acids Res..

[19]  Ibtissem Grissa,et al.  The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats , 2007, BMC Bioinformatics.

[20]  Kenta Nakai,et al.  Computational prediction of subcellular localization. , 2007, Methods in molecular biology.

[21]  D. Ajdic,et al.  Global Transcriptional Analysis of Streptococcus mutans Sugar Transporters Using Microarrays , 2007, Journal of bacteriology.

[22]  D. Swan,et al.  Comparative genome hybridization of Streptococcus mutans strains. , 2007, Oral microbiology and immunology.

[23]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[24]  Gregory A. Buck,et al.  Genome of the Opportunistic Pathogen Streptococcus sanguinis , 2007, Journal of bacteriology.

[25]  Julian Parkhill,et al.  Complete Genome of Acute Rheumatic Fever-Associated Serotype M5 Streptococcus pyogenes Strain Manfredo , 2006, Journal of bacteriology.

[26]  J. R. van der Ploeg Genome sequence of Streptococcus mutans bacteriophage M102. , 2007, FEMS microbiology letters.

[27]  M. Stanhope,et al.  Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition , 2007, Genome Biology.

[28]  G. B. Golding,et al.  Gene gain and gene loss in streptococcus: is it driven by habitat? , 2006, Molecular biology and evolution.

[29]  J. F. Höfling,et al.  Genetic Diversity of Competence Gene Loci in Clinical Genotypes of Streptococcus mutans , 2006, Journal of Clinical Microbiology.

[30]  Chuan Yi Tang,et al.  SPRING: a tool for the analysis of genome rearrangement using reversals and block-interchanges , 2006, Nucleic Acids Res..

[31]  J. C. Waterhouse,et al.  Dispensable genes and foreign DNA in Streptococcus mutans. , 2006, Microbiology.

[32]  N. Grishin,et al.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action , 2006, Biology Direct.

[33]  S. Lowes,et al.  Genomic variation in Streptococcus mutans: deletions affecting the multiple pathways of beta-glucoside metabolism. , 2006, Oral microbiology and immunology.

[34]  J. Lawrence,et al.  Selection for Chromosome Architecture in Bacteria , 2006, Journal of Molecular Evolution.

[35]  J. S. Godde,et al.  The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer Among Prokaryotes , 2006, Journal of Molecular Evolution.

[36]  C. Fraser-Liggett,et al.  Insights on biology and evolution from microbial genome sequencing. , 2005, Genome research.

[37]  H. Tomita,et al.  Genetic Analysis of Transfer-Related Regions of the Vancomycin Resistance Enterococcus Conjugative Plasmid pHTβ: Identification of oriT and a Putative Relaxase Gene , 2005, Journal of bacteriology.

[38]  Daniel H. Haft,et al.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes , 2005, PLoS Comput. Biol..

[39]  J. Lawrence,et al.  Genome evolution in bacteria: order beneath chaos. , 2005, Current opinion in microbiology.

[40]  Jaideep P. Sundaram,et al.  Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  E. Bidnenko,et al.  Phage abortive infection in lactococci: variations on a theme. , 2005, Current opinion in microbiology.

[42]  Yihong Li,et al.  Identification of Unique Bacterial Gene Segments from Streptococcus mutans with Potential Relevance to Dental Caries by Subtraction DNA Hybridization , 2005, Journal of Clinical Microbiology.

[43]  J. F. Höfling,et al.  Frequency of four different mutacin genes in Streptococcus mutans genotypes isolated from caries-free and caries-active individuals. , 2005, Journal of medical microbiology.

[44]  S. Ehrlich,et al.  Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. , 2005, Microbiology.

[45]  J. Peden,et al.  Inter-species horizontal transfer resulting in core-genome and niche-adaptive variation within Helicobacter pylori , 2005, BMC Genomics.

[46]  A. Goffeau,et al.  Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus , 2004, Nature Biotechnology.

[47]  Rekha R Meyer,et al.  Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid , 2004, Nature Genetics.

[48]  A. Segall,et al.  Unequal access of chromosomal regions to each other in Salmonella: probing chromosome structure with phage λ integrase‐mediated long‐range rearrangements , 2004, Molecular microbiology.

[49]  Wolf-Dietrich Hardt,et al.  Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion , 2004, Microbiology and Molecular Biology Reviews.

[50]  P. Taylor,et al.  Isolation of bacteriophages from the oral cavity , 2004, Letters in applied microbiology.

[51]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[52]  A. Segall,et al.  Unequal access of chromosomal regions to each other in Salmonella: probing chromosome structure with phage λ integrase‐mediated long‐range rearrangements , 2004 .

[53]  D. Gevers,et al.  Gene duplication and biased functional retention of paralogs in bacterial genomes. , 2004, Trends in microbiology.

[54]  Dirk Springael,et al.  Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. , 2004, Trends in microbiology.

[55]  N. Campo,et al.  Chromosomal constraints in Gram‐positive bacteria revealed by artificial inversions , 2004, Molecular microbiology.

[56]  S. Cebrat,et al.  Where does bacterial replication start? Rules for predicting the oriC region. , 2004, Nucleic acids research.

[57]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[58]  M. Feldgarden,et al.  Gradual evolution in bacteria: evidence from Bacillus systematics. , 2003, Microbiology.

[59]  M. Seki,et al.  Analysis of Loci Required for Determination of Serotype Antigenicity in Streptococcus mutans and Its Clinical Utilization , 2003, Journal of Clinical Microbiology.

[60]  Masahira Hattori,et al.  Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. , 2003, Genome research.

[61]  Jiuzhou Z. Song,et al.  Wavelet to predict bacterial ori and ter: a tendency towards a physical balance , 2003, BMC Genomics.

[62]  Guy Plunkett,et al.  Comparative Genomics of Salmonellaenterica Serovar Typhi Strains Ty2 and CT18 , 2003, Journal of bacteriology.

[63]  W. G. Robinson,et al.  Chromosomal Insertions and Deletions in Streptococcus mutans , 2003, Caries Research.

[64]  D. Steinberg,et al.  Bacteriophage isolation from human saliva , 2003, Letters in applied microbiology.

[65]  Runying Tian,et al.  Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Santiago Garcia-Vallvé,et al.  Genetic variation between Helicobacter pylori strains: gene acquisition or loss? , 2002, Trends in microbiology.

[67]  Ian T. Paulsen,et al.  Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  G. Olsen,et al.  Comparative genomics of closely related salmonellae. , 2002, Trends in microbiology.

[69]  Howard Ochman,et al.  Reconciling the many faces of lateral gene transfer. , 2002, Trends in microbiology.

[70]  J Hacker,et al.  Whole genome plasticity in pathogenic bacteria. , 2001, Current opinion in microbiology.

[71]  Elliot J. Lefkowitz,et al.  Genome of the Bacterium Streptococcus pneumoniae Strain R6 , 2001, Journal of bacteriology.

[72]  I. Kobayashi Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. , 2001, Nucleic acids research.

[73]  J. Weissenbach,et al.  Mechanisms of Evolution in Rickettsia conorii and R. prowazekii , 2001, Science.

[74]  S. Cole,et al.  The evolution of mycobacterial pathogenicity: clues from comparative genomics. , 2001, Trends in microbiology.

[75]  S. Salzberg,et al.  Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae , 2001, Science.

[76]  S. Makino,et al.  Bacterial genomic reorganization upon DNA replication. , 2001, Science.

[77]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[78]  Peter S. C. Lau,et al.  Natural Genetic Transformation ofStreptococcus mutans Growing in Biofilms , 2001, Journal of bacteriology.

[79]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[80]  S. Salzberg,et al.  Evidence for symmetric chromosomal inversions around the replication origin in bacteria , 2000, Genome Biology.

[81]  E. Tillier,et al.  Replication Orientation Affects the Rate and Direction of Bacterial Gene Evolution , 2000, Journal of Molecular Evolution.

[82]  B. Wren Microbial genome analysis: insights into virulence, host adaptation and evolution , 2000, Nature Reviews Genetics.

[83]  E. Tillier,et al.  Genome rearrangement by replication-directed translocation , 2000, Nature Genetics.

[84]  J. Ferretti,et al.  Replication origin of Streptococcus pyogenes, organization and cloning in heterologous systems. , 2000, FEMS microbiology letters.

[85]  S. Salzberg,et al.  Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. , 2000, Nucleic acids research.

[86]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[87]  F. Qi,et al.  Purification of Mutacin III from Group IIIStreptococcus mutans UA787 and Genetic Analyses of Mutacin III Biosynthesis Genes , 1999, Applied and Environmental Microbiology.

[88]  A. Kuzminov,et al.  Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. , 1999, Genes & development.

[89]  D. Dykhuizen,et al.  Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[90]  S. Hamada,et al.  Molecular analyses of glucosyltransferase genes among strains of Streptococcus mutans. , 1998, FEMS microbiology letters.

[91]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[92]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[93]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[94]  Shigeki Mitaku,et al.  SOSUI: classification and secondary structure prediction system for membrane proteins , 1998, Bioinform..

[95]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[96]  H. Ochman,et al.  Amelioration of Bacterial Genomes: Rates of Change and Exchange , 1997, Journal of Molecular Evolution.

[97]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[98]  T. Koga,et al.  Biological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans , 1997, Journal of bacteriology.

[99]  K. Sanderson,et al.  The chromosome of Salmonella paratyphi A is inverted by recombination between rrnH and rrnG , 1995, Journal of bacteriology.

[100]  T. Igarashi,et al.  Characterization of the Dextranase Gene (dex) of Streptococcus mutans and Its Recombinant Product in an Escherichia coli Host , 1995, Microbiology and immunology.

[101]  T Ezaki,et al.  Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. , 1995, International journal of systematic bacteriology.

[102]  A. Segall,et al.  Approaches to half-tetrad analysis in bacteria: recombination between repeated, inverse-order chromosomal sequences. , 1994, Genetics.

[103]  T. Lehner,et al.  Restriction fragment length polymorphisms and sequence variation within the spaP gene of Streptococcus mutans serotype c isolates , 1991, Infection and immunity.

[104]  A. Coykendall Classification and identification of the viridans streptococci , 1989, Clinical Microbiology Reviews.

[105]  J. Ferretti,et al.  Sequence analysis of the wall‐associated protein precursor of Streptococcus mutans antigen A , 1989, Molecular microbiology.

[106]  G. Cutter,et al.  Plasmid-containing strains of Streptococcus mutans cluster within family and racial cohorts: implications for natural transmission , 1988, Infection and immunity.

[107]  P. Caufield,et al.  Familial clustering of the Streptococcus mutans cryptic plasmid strain in a dental clinic population , 1982, Infection and immunity.

[108]  S. Hamada,et al.  Biology, immunology, and cariogenicity of Streptococcus mutans , 1980 .

[109]  S. Hamada,et al.  Biology, immunology, and cariogenicity of Streptococcus mutans. , 1980, Microbiological reviews.

[110]  R. G. Anderson,et al.  The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane. , 1972, The Biochemical journal.

[111]  J. Strominger,et al.  Mechanism of action of bacitracin: complexation with metal ion and C 55 -isoprenyl pyrophosphate. , 1971, Proceedings of the National Academy of Sciences of the United States of America.