Thrust Chamber Dynamics and Propulsive Performance of Single -Tube Pulse Detonation Engines

This pape r deals with the modeling and simulation of the thrust chamber dynamics in an airbreathing pulse detonation engine (PDE). The system under consideration includes a supersonic inlet, an air manifold, a rotary valve, a single -tube combustor , and a convergent -divergent nozzle. The analysis accommodates the full conservation equations in two - dimensional coordinates, along with a calibrated one - progress -variable chemical reaction scheme for a stoichiometric hydrogen/air mixture. The combustion and flow dynamics involved in typical PDE operations are carefully examined. In addition, a flow -path based performance prediction model is established to estimate the theoretical limit of the engine propulsive performance. Various performance loss mechanisms, including refilling process, mismatch of nozzle exit flow conditions with the ambient state, nozzle flow divergence, and internal flow dynamics, are identified and quantified. The internal flow loss, which mainly arises from the shock waves within the chamber, play s a dominant role in degrading the PDE performance. The effects of engine operating parameters and nozzle configurations on the system dynamics are also studied in depth. Results indicate the existence of an optimum operating frequency for achieving a be st performance margin. For a given cycle period and purge time, the performance increases with decreasing valve close -up time in most cases. On the other hand, a larger purge time decreases the specific thrust but increases the specific impulse for a giv en cycle period and valve close -up time. The nozzle throat area affects both the flow expansion process and chamber dynamics, thereby exerting a much more significant influence than the other nozzle geometrical parameters.

[1]  Sin-Chung Chang The Method of Space-Time Conservation Element and Solution Element-A New Approach for Solving the Navier-Stokes and Euler Equations , 1995 .

[2]  R. B. Morrison,et al.  Intermittent Detonation as a Thrust-Producing Mechanism , 1957 .

[3]  Sin-Chung Chang,et al.  Regular Article: The Space-Time Conservation Element and Solution Element Method: A New High-Resolution and Genuinely Multidimensional Paradigm for Solving Conservation Laws , 1999 .

[4]  Vigor Yang,et al.  System performance and thermodynamic cycle analysis of air-breathing pulse detonation engines , 2002 .

[5]  Xiaolong Yang,et al.  Analysis of the pulse detonation engine efficiency , 1998 .

[6]  J. Sinibaldi,et al.  Performance characterization of a valveless pulse detonation engine , 2003 .

[7]  K. Kailasanath,et al.  Partial Fuel Filling in Pulse Detonation Engines , 2003 .

[8]  Joseph E. Shepherd,et al.  Analytical Model for the Impulse of Single-Cycle Pulse Detonation Tube , 2003 .

[9]  Roger A. Dunlap,et al.  A Preliminary Study of the Application of Steady-State Detonative Combustion to a Reaction Engine , 1958 .

[10]  John H. S. Lee,et al.  Dynamic Parameters of Gaseous Detonations , 1984 .

[11]  S. A. Losev,et al.  Combustion of natural gas in a commercial detonation reactor , 1981 .

[12]  M. J. Aarnio,et al.  Multiple Cycle Detonation Experiments during the Development of a Pulse Detonation Engine , 1996 .

[13]  Joseph T. Williams,et al.  Rotary-Valved, Multiple-Cycle, Pulse Detonation Engine Experimental Demonstration , 1997 .

[14]  V. Yang,et al.  Space–Time Method for Detonation Problems with Finite-rate Chemical Kinetics , 2004 .

[15]  Christopher Brophy,et al.  Detonation studies of JP-10 with oxygen and air for pulse detonation engine development , 1998 .

[16]  E. Furlong,et al.  MEMS-based pulse detonation engine for small-scale propulsion applicationsMEMS-based pulse detonation engine for small-scale propulsion applications , 2001 .

[17]  Paul Harris,et al.  Single-Tube Two-Dimensional Evaluation of a Pulse Detonation Engine as a Ramjet Replacement , 2004 .

[18]  H. Ebrahimi Numerical investigation of multi-tube pulse detonation , 2003, 2003 User Group Conference. Proceedings.

[19]  E. Wintenberger,et al.  Model for the Performance of Airbreathing Pulse-Detonation Engines , 2006 .

[20]  Vigor Yang,et al.  System Performance and Thermodynamic Cycle Analysis of Airbreathing Pulse Detonation Engines , 2003 .

[21]  J. Kentfield The Fundamentals of Idealized Air- Breathing Pulse-Detonation Engines , 2000 .

[22]  Joseph M. Powers,et al.  Review of Multiscale Modeling of Detonation , 2006 .

[23]  Joseph E. Shepherd,et al.  Detonation Initiation by a Hot Turbulent Jet for use in Pulse Detonation Engines , 2002 .

[24]  Sin-Chung Chang,et al.  A space-time conservation element and solution element method for solving the two- and three-dimensional unsteady euler equations using quadrilateral and hexahedral meshes , 2002 .

[25]  K. Kailasanath,et al.  Initiator Detonation Diffraction Studies In Pulsed Detonation Engines , 2001 .

[26]  J. Sterling,et al.  Enhanced combustion pulsejet engines for Mach 0 to 3 applications , 1996 .

[27]  T Bussing,et al.  A Pulse Detonation Engine performance model , 1995 .

[28]  John Hoke,et al.  Evaluation of a Hybrid-Piston Pulsed Detonation Engine , 2002 .

[29]  John H. S. Lee,et al.  Direct Initiation of Spherical Detonation by a Hot Turbulent Gas Jet , 1979 .

[30]  S. Kawai,et al.  NUMERICAL ANALYSIS OF 1ST AND 2ND CYCLES OF OXYHYDROGEN PDE , 2002 .

[31]  Kailas Kailasanath,et al.  Review of Propulsion Applications of Detonation Waves , 2000 .

[32]  K. Kailasanath,et al.  A review of research on pulse detonation engine nozzles , 2001 .

[33]  Geoffrey Ingram Taylor,et al.  The Air Pressure on a Cone Moving at High Speeds. II , 1933 .

[34]  Joseph E. Shepherd,et al.  AN ANALYTICAL MODEL FOR THE IMPULSE OF A SINGLE-CYCLE PULSE DETONATION ENGINE , 2001 .

[35]  D. C. Bull,et al.  Detonation cell structures in fuel/air mixtures , 1982 .

[36]  S. Tieszen,et al.  The influence of initial pressure and temperature on hydrogen-air-diluent detonations , 1991 .

[37]  Ephraim Gutmark,et al.  Effects of exit geometry on the performance of a pulse detonation engine , 2002 .

[38]  Kaveh Ghorbanian,et al.  Numerical investigations of pulse detonation wave engines , 1995 .

[39]  Joseph E. Shepherd,et al.  The Effect of Nozzles and Extensions on Detonation Tube Performance , 2002 .

[40]  B. K. Hodge,et al.  Compressible fluid dynamics with personal computer applications , 1995 .

[41]  Kailas Kailasanath,et al.  Recent Developments in the Research on Pulse Detonation Engines , 2002 .

[42]  Francois Falempin,et al.  Pulsed detonation engine - Possible application to low cost tactical missile and to space launcher , 2001 .

[43]  Vigor Yang,et al.  Propulsive performance of airbreathing pulse detonation engines , 2006 .

[44]  Jean-Luc Cambier,et al.  Preliminary numerical simulations of a pulsed detonation wave engine , 1988 .

[45]  John Hoke,et al.  Experimental Study of Deflagration-to-Detonation Enhancement Techniques in a H2/Air Pulsed-Detonation Engine , 2002 .

[46]  Gopal Patnaik,et al.  A numerical study of flow field evolution in a pulsed detonation engine , 2000 .

[47]  Charles L. Merkle,et al.  Multi-level analysis of pulsed detonation engines , 2000 .

[48]  T. Bussing,et al.  An introduction to pulse detonation engines , 1994 .

[49]  Ron J. Litchford Development of a Gas-Fed Pulse Detonation Research Engine , 2001 .

[50]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[51]  B. W. Skews,et al.  The perturbed region behind a diffracting shock wave , 1967, Journal of Fluid Mechanics.

[52]  Charles L. Merkle,et al.  Modeling of Pulse Detonation Engine Operation , 2001 .

[53]  Ronald K. Hanson,et al.  Diode Laser Sensor System for Multi-Parameter Measurements in Pulse Detonation Engine Flows , 2000 .

[54]  Joseph E. Shepherd,et al.  Direct Experimental Impulse Measurements for Detonations and Deflagrations , 2001 .

[55]  Christopher Brophy,et al.  Effects of Ignition Characteristics and Geometry on the Performance of a JP-1 O/O* Fueled Pulse Detonation Engine , 1999 .

[56]  D. Talley,et al.  The Constant Volume Limit of Pulsed Propulsion for a Constant Gamma Ideal Gas , 2002 .

[57]  J. Green Interactions between shock waves and turbulent boundary layers , 1970 .

[58]  William H. Heiser,et al.  Thermodynamic Cycle Analysis of Pulse Detonation Engines , 2002 .

[59]  J.-L. Cambier,et al.  Strategies for Pulsed Detonation Engine Performance Optimization , 1998 .

[60]  Charles L. Merkle,et al.  A numerical study of pulse detonation engine performance , 2000 .

[61]  I. Moen,et al.  The mechans of transition from deflagration to detonation in vapor cloud explosions , 1980 .

[62]  Kailas Kailasanath,et al.  A review of PDE research-performance estimates , 2001 .

[63]  W. R. Watson,et al.  Inflow-outflow boundary conditions for two-dimensional acoustic waves in channels with flow , 1991 .

[64]  Jack D. Mattingly,et al.  Elements of Gas Turbine Propulsion , 1996 .

[65]  Kazuyoshi Takayama,et al.  Vorticity production in shock diffraction , 2003, Journal of Fluid Mechanics.

[66]  L. J. Krzycki PERFORMANCE CHARACTERISTICS OF AN INTERMITTENT-DETONATION DEVICE , 1962 .

[67]  T. Bussing,et al.  Shock tube experiments for the development of a hydrogen-fueled pulse detonation engine , 1995 .

[68]  Itzhak Lottati,et al.  Air-breathing pulsed detonation engine concept - A numerical study , 1990 .

[69]  J. Sinibaldi,et al.  Initiator performance for liquid-fueled pulse detonation engines , 2002 .

[70]  A. Karagozian,et al.  Pulse-Detonation-Engine Simulations with Alternative Geometries and Reaction Kinetics , 2006 .

[71]  Venkat Eswarlu Tangirala,et al.  Experimental and Numerical Investigations of Ejectors for PDE Applications , 2003 .

[72]  P. Thibault,et al.  The effect of DDT distance on impulse in a detonation tube , 2001 .

[73]  Chiping Li,et al.  A numerical study of reactive flows in pulse detonation engines , 2001 .

[74]  Shmuel Eidelman,et al.  Review of Propulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept , 1991 .

[75]  Gopal Patnaik,et al.  COMPUTATIONAL STUDIES OF PULSE DETONATION ENGINES: A STATUS REPORT , 1999 .

[76]  Shaye Yungster,et al.  Multiple-cycle Simulation of a Pulse Detonation Engine Ejector , 2002 .

[77]  David Helman,et al.  Detonation Pulse Engine , 1986 .

[78]  Geoffrey Ingram Taylor,et al.  The dynamics of the combustion products behind plane and spherical detonation fronts in explosives , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[79]  J. Shepherd,et al.  A Model for the Performance of an Airbreathing Pulse Detonation Engine , 2003 .

[80]  Philip C. E. Jorgenson,et al.  Robust and simple non-reflecting boundary conditions for the space-time conservation element and solution element method , 1997 .

[81]  S. M. Guzik,et al.  Pulse Detonation Engine as a Ramjet Replacement , 2006 .

[82]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[84]  H. C. Yee,et al.  A class of high resolution explicit and implicit shock-capturing methods , 1989 .

[85]  Frederick R. Schauer,et al.  Detonation Initiation Studies and Performance Results for Pulsed Detonation Engine Applications , 2001 .

[86]  V. Yang,et al.  Interactions Between Shock and Acoustic Waves in a Supersonic Inlet Diffuser , 1994 .

[87]  W. C. Davis,et al.  Detonation: Theory and Experiment , 1979 .

[88]  Shaye Yungster,et al.  Analysis of Nozzle and Ejector Effects on Pulse Detonation Engine Performance , 2003 .

[89]  P. Roache QUANTIFICATION OF UNCERTAINTY IN COMPUTATIONAL FLUID DYNAMICS , 1997 .

[90]  K. Kailasanath,et al.  Performance Analysis of Pulse Detonation Engines with Partial Fuel Filling , 2002 .

[91]  B. W. Skews,et al.  The shape of a diffracting shock wave , 1967, Journal of Fluid Mechanics.

[92]  Joseph E. Shepherd,et al.  THE STRUCTURE OF THE DETONATION FRONT IN GASES , 2002 .

[93]  Vigor Yang,et al.  Analysis of unsteady inviscid diffuser flow with a shock wave , 1985 .

[94]  Soshi Kawai,et al.  Numerical Analysis of First and Second Cycles of Oxyhydrogen Pulse Detonation Engine , 2003 .

[95]  Houshang B. Ebrahimi,et al.  Modeling of Multi-Tube Pulse Detonation Engine Operation , 2001 .

[96]  Stephen D. Heister,et al.  An Experimental and Computational Study of Pulsed Detonations in a Single Tube , 2002 .

[97]  Charles L. Merkle,et al.  A NUMERICAL SIMULATION OF A PULSE DETONATION ENGINE WITH HYDROGEN FUELS , 2002 .

[98]  T. Bussing,et al.  Pulse detonation engine preliminary design considerations , 1994 .

[99]  F. Culick,et al.  The response of normal shocks in diffusers , 1981 .

[100]  M. Nalim,et al.  Gas Dynamic Limits and Optimization of Pulsed Detonation Static Thrust , 2000 .

[101]  Robert J. Santoro,et al.  DEFLAGRATION TO DETONATION TRANSITION STUDY USING SIMULTANEOUS SCHLIEREN AND OH PLIF IMAGES , 2000 .

[102]  A. K. Oppenheim,et al.  Recent Progress in Detonation Research , 1963 .

[103]  Jeffrey J. Berton Divergence Thrust Loss Calculations for' Convergent-Divergent Nozzles: Extensions to the Classical Case , 1991 .

[104]  Robert Stowe,et al.  Multi-Pulse Detonation Experiments with Propane-Oxygen , 2002 .