Newton-PGSS and Its Improvement Method for Solving Nonlinear Systems with Saddle Point Jacobian Matrices

The preconditioned generalized shift-splitting (PGSS) iteration method is unconditionally convergent for solving saddle point problems with nonsymmetric coefficient matrices. By making use of the PGSS iteration as the inner solver for the Newton method, we establish a class of Newton-PGSS method for solving large sparse nonlinear system with nonsymmetric Jacobian matrices about saddle point problems. For the new presented method, we give the local convergence analysis and semilocal convergence analysis under Holder condition, which is weaker than Lipschitz condition. In order to further raise the efficiency of the algorithm, we improve the method to obtain the modified Newton-PGSS and prove its local convergence. Furthermore, we compare our new methods with the Newton-RHSS method, which is a considerable method for solving large sparse nonlinear system with saddle point nonsymmetric Jacobian matrix, and the numerical results show the efficiency of our new method.

[1]  Werner C. Rheinboldt,et al.  Methods for Solving Systems of Nonlinear Equations: Second Edition , 1998 .

[2]  Qingqing Zheng,et al.  Extended shift-splitting preconditioners for saddle point problems , 2017, J. Comput. Appl. Math..

[3]  Yang Cao Regularized DPSS preconditioners for non-Hermitian saddle point problems , 2018, Appl. Math. Lett..

[4]  Zhong-Zhi Bai,et al.  On spectral clustering of HSS preconditioner for generalized saddle-point matrices , 2018, Linear Algebra and its Applications.

[5]  Z. Bai,et al.  A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations , 2007 .

[6]  Sen Li,et al.  A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems , 2015, Appl. Math. Lett..

[7]  Hengbin An,et al.  A choice of forcing terms in inexact Newton method , 2007 .

[8]  Yu-Jiang Wu,et al.  The modified shift-splitting preconditioners for nonsymmetric saddle-point problems , 2016, Appl. Math. Lett..

[9]  Davod Khojasteh Salkuyeh,et al.  Shifted skew-symmetric/skew-symmetric splitting method and its application to generalized saddle point problems , 2020, Appl. Math. Lett..

[10]  Zhong-zhi,et al.  A SHIFT-SPLITTING PRECONDITIONER FOR NON-HERMITIAN POSITIVE DEFINITE MATRICES , 2006 .

[11]  Quan Shi,et al.  Generalized shift-splitting preconditioners for nonsingular and singular generalized saddle point problems , 2016, Comput. Math. Appl..

[12]  Yang Cao,et al.  A splitting preconditioner for saddle point problems , 2011, Numer. Linear Algebra Appl..

[13]  Werner C. Rheinboldt,et al.  Methods for solving systems of nonlinear equations , 1987 .

[14]  Jianrong Tan,et al.  A convergence theorem for the inexact Newton methods based on Hölder continuous Fréchet derivative , 2008, Appl. Math. Comput..

[15]  Wolf-Jürgen Beyn,et al.  Simulating the motion of the leech: A biomechanical application of DAEs , 1998, Numerical Algorithms.

[16]  Zhong-Zhi Bai,et al.  Regularized HSS iteration methods for stabilized saddle-point problems , 2018, IMA Journal of Numerical Analysis.

[17]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[18]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[19]  Ai-Li Yang,et al.  Scaled norm minimization method for computing the parameters of the HSS and the two‐parameter HSS preconditioners , 2018, Numer. Linear Algebra Appl..

[20]  Li Yang,et al.  Optimization of a parameterized inexact Uzawa method for saddle point problems , 2018, Int. J. Comput. Math..

[21]  Zhong Xu,et al.  Improved PPHSS iterative methods for solving nonsingular and singular saddle point problems , 2016, Comput. Math. Appl..

[22]  Yang Cao,et al.  Regularized DPSS preconditioners for generalized saddle point linear systems , 2020, Comput. Math. Appl..

[23]  Qingbiao Wu,et al.  Modified Newton-DSS method for solving a class of systems of nonlinear equations with complex symmetric Jacobian matrices , 2019, Numerical Algorithms.

[24]  Yu-Jiang Wu,et al.  Modified parameterized inexact Uzawa method for singular saddle-point problems , 2015, Numerical Algorithms.

[25]  W. Marsden I and J , 2012 .

[26]  Davod Khojasteh Salkuyeh,et al.  A new relaxed HSS preconditioner for saddle point problems , 2016, Numerical Algorithms.

[27]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[28]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[29]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[30]  Ke Wang,et al.  Improved PHSS iterative methods for solving saddle point problems , 2016, Numerical Algorithms.

[31]  Yang Cao Improved Relaxed Positive-Definite and Skew-Hermitian Splitting Preconditioners for Saddle Point Problems , 2019, Journal of Computational Mathematics.

[32]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[33]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[34]  W. Rheinboldt A unified convergence theory for a class of iterative processes. , 1968 .

[35]  Yang Cao,et al.  On preconditioned generalized shift-splitting iteration methods for saddle point problems , 2017, Comput. Math. Appl..

[36]  Yang Cao,et al.  Shift-splitting preconditioners for saddle point problems , 2014, J. Comput. Appl. Math..

[37]  Guo,et al.  ON SEMILOCAL CONVERGENCE OF INEXACT NEWTON METHODS , 2007 .

[38]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[39]  Gene H. Golub,et al.  Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .

[40]  Qingbiao Wu,et al.  On modified Newton-DGPMHSS method for solving nonlinear systems with complex symmetric Jacobian matrices , 2018, Comput. Math. Appl..

[41]  Minhong Chen,et al.  Semilocal convergence analysis for the modified Newton-HSS method under the Hölder condition , 2015, Numerical Algorithms.

[42]  Neil Genzlinger A. and Q , 2006 .