Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography

[1]  Geraint Rees,et al.  Quantitative MRI provides markers of intra-, inter-regional, and age-related differences in young adult cortical microstructure , 2017, NeuroImage.

[2]  Julia M. Huntenburg,et al.  Large-Scale Gradients in Human Cortical Organization , 2018, Trends in Cognitive Sciences.

[3]  John D Murray,et al.  Working Memory and Decision-Making in a Frontoparietal Circuit Model , 2017, The Journal of Neuroscience.

[4]  Michael Hawrylycz,et al.  Transcriptomic Perspectives on Neocortical Structure, Development, Evolution, and Disease. , 2017, Annual review of neuroscience.

[5]  René S. Kahn,et al.  Connectome Disconnectivity and Cortical Gene Expression in Patients With Schizophrenia , 2017, Biological Psychiatry.

[6]  Michael W. Cole,et al.  Cognitive task information is transferred between brain regions via resting-state network topology , 2017, Nature Communications.

[7]  Michael A. Barnett,et al.  Microstructural proliferation in human cortex is coupled with the development of face processing , 2017, Science.

[8]  Núria Queralt-Rosinach,et al.  DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants , 2016, Nucleic Acids Res..

[9]  Peter B. Jones,et al.  373. Adolescence is Associated with Genomically Patterned Consolidation of the Hubs of the Human Brain Connectome , 2016, Biological Psychiatry.

[10]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[11]  Giulio Genovese,et al.  Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia , 2016, Nature Neuroscience.

[12]  Allan R. Jones,et al.  Comprehensive transcriptional map of primate brain development , 2016, Nature.

[13]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[14]  Claus C. Hilgetag,et al.  The primate connectome in context: Principles of connections of the cortical visual system , 2016, NeuroImage.

[15]  M. Ronaghi,et al.  Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.

[16]  Chad J. Donahue,et al.  Using Diffusion Tractography to Predict Cortical Connection Strength and Distance: A Quantitative Comparison with Tracers in the Monkey , 2016, The Journal of Neuroscience.

[17]  Xiao-Jing Wang,et al.  A dendritic disinhibitory circuit mechanism for pathway-specific gating , 2016, Nature Communications.

[18]  Antoine Lutti,et al.  Neurobiological origin of spurious brain morphological changes: A quantitative MRI study , 2016, Human brain mapping.

[19]  Ben D. Fulcher,et al.  A transcriptional signature of hub connectivity in the mouse connectome , 2016, Proceedings of the National Academy of Sciences.

[20]  Fenna M. Krienen,et al.  Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain , 2016, Proceedings of the National Academy of Sciences.

[21]  D. Geschwind,et al.  Correspondence between Resting-State Activity and Brain Gene Expression , 2015, Neuron.

[22]  Allan R. Jones,et al.  Canonical Genetic Signatures of the Adult Human Brain , 2015, Nature Neuroscience.

[23]  M. Rietschel,et al.  Correlated gene expression supports synchronous activity in brain networks , 2015, Science.

[24]  Konrad Wagstyl,et al.  Cortical thickness gradients in structural hierarchies , 2015, NeuroImage.

[25]  H. Kennedy,et al.  A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex , 2015, Neuron.

[26]  David J. Freedman,et al.  A hierarchy of intrinsic timescales across primate cortex , 2014, Nature Neuroscience.

[27]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[28]  B. Wandell,et al.  Lifespan maturation and degeneration of human brain white matter , 2014, Nature Communications.

[29]  W. M. van der Flier,et al.  Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies , 2014, Human molecular genetics.

[30]  Matthew F. Glasser,et al.  Trends and Properties of Human Cerebral Cortex: Correlations with Cortical Myelin Content Introduction and Review , 2022 .

[31]  Robert Turner,et al.  Myelin and iron concentration in the human brain: A quantitative study of MRI contrast , 2014, NeuroImage.

[32]  Nikolaus Weiskopf,et al.  Using high-resolution quantitative mapping of R1 as an index of cortical myelination , 2014, NeuroImage.

[33]  J. Nielsen,et al.  Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics. , 2014, Molecular & cellular proteomics : MCP.

[34]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[35]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[36]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[37]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[38]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[39]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy† , 2012, Cerebral cortex.

[40]  D. Heeger,et al.  Slow Cortical Dynamics and the Accumulation of Information over Long Timescales , 2012, Neuron.

[41]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[42]  Allan R. Jones,et al.  Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals Species-Specific Molecular Signatures , 2012, Cell.

[43]  Tao Wang,et al.  SynaptomeDB: an ontology-based knowledgebase for synaptic genes , 2012, Bioinform..

[44]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[45]  I. Fujita,et al.  Spinogenesis and Pruning in the Anterior Ventral Inferotemporal Cortex of the Macaque Monkey: An Intracellular Injection Study of Layer III Pyramidal Cells , 2011, Front. Neuroanat..

[46]  Paul A. Longley,et al.  Handbook of applied spatial analysis: software tools, methods and applications, edited by M.M. Fischer and A. Getis , 2011 .

[47]  C. Honey,et al.  Topographic Mapping of a Hierarchy of Temporal Receptive Windows Using a Narrated Story , 2011, The Journal of Neuroscience.

[48]  Manfred M. Fischer,et al.  Handbook of Applied Spatial AnalysisSoftware Tools, Methods and Applications , 2010 .

[49]  Manfred M. Fischer,et al.  Handbook of Applied Spatial Analysis , 2010 .

[50]  M. D’Esposito,et al.  Is the rostro-caudal axis of the frontal lobe hierarchical? , 2009, Nature Reviews Neuroscience.

[51]  D. Geschwind,et al.  Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis , 2009, Neuron.

[52]  Jing Chen,et al.  ToppGene Suite for gene list enrichment analysis and candidate gene prioritization , 2009, Nucleic Acids Res..

[53]  Huaixing Wang,et al.  A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex , 2008, Proceedings of the National Academy of Sciences.

[54]  D. Heeger,et al.  A Hierarchy of Temporal Receptive Windows in Human Cortex , 2008, The Journal of Neuroscience.

[55]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[56]  L. Anselin Chapter 14. Spatial Econometrics , 2007 .

[57]  Age K Smilde,et al.  Estimating confidence intervals for principal component loadings: a comparison between the bootstrap and asymptotic results. , 2007, The British journal of mathematical and statistical psychology.

[58]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[59]  G. Elston,et al.  A study of pyramidal cell structure in the cingulate cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. , 2004, Cerebral cortex.

[60]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[61]  G. Elston Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. , 2003, Cerebral cortex.

[62]  K. Rockland,et al.  The pyramidal cell of the sensorimotor cortex of the macaque monkey: phenotypic variation. , 2002, Cerebral cortex.

[63]  C C Hilgetag,et al.  Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. , 2001, Cerebral cortex.

[64]  Xiao-Jing Wang Synaptic reverberation underlying mnemonic persistent activity , 2001, Trends in Neurosciences.

[65]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[66]  Keiji Tanaka,et al.  Neurochemical gradients along monkey sensory cortical pathways: calbindin‐immunoreactive pyramidal neurons in layers II and III , 1999, The European journal of neuroscience.

[67]  G. Elston,et al.  Cortical integration in the visual system of the macaque monkey: large-scale morphological differences in the pyramidal neurons in the occipital, parietal and temporal lobes , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[68]  P. Lennie Single Units and Visual Cortical Organization , 1998, Perception.

[69]  G. Elston,et al.  Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. , 1998, Cerebral cortex.

[70]  Anthony C. Davison,et al.  Bootstrap Methods and their Application , 1997 .

[71]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[72]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[73]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions , 1996, The Journal of comparative neurology.

[74]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[75]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[76]  P. Sen Estimates of the Regression Coefficient Based on Kendall's Tau , 1968 .