Laser-induced white-light emission from graphene ceramics–opening a band gap in graphene

[1]  H. Murakami,et al.  White-light-emitting edge-functionalized graphene quantum dots. , 2014, Angewandte Chemie.

[2]  Peng Zhou,et al.  Evolution of the band-gap and optical properties of graphene oxide with controllable reduction level , 2013 .

[3]  Wieslaw Strek,et al.  Infrared laser stimulated broadband white emission of Yb3+:YAG nanoceramics , 2013 .

[4]  Thomas A. Lograsso,et al.  Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations , 2013, Nature.

[5]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[6]  Wei Gao,et al.  Highly conductive and stretchable polymer composites based on graphene/MWCNT network. , 2013, Chemical communications.

[7]  Nianqiang Wu,et al.  Fingerprinting photoluminescence of functional groups in graphene oxide , 2012 .

[8]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[9]  Guonan Chen,et al.  Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid , 2012 .

[10]  K. Mak,et al.  Optical spectroscopy of graphene: From the far infrared to the ultraviolet , 2012 .

[11]  M. Scarselli,et al.  Electronic and optoelectronic nano-devices based on carbon nanotubes , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Qiyuan He,et al.  Graphene-based electronic sensors , 2012 .

[13]  Peng Chen,et al.  Biological and chemical sensors based on graphene materials. , 2012, Chemical Society reviews.

[14]  H. Ohnishi,et al.  Photoinduced Conversion of Hybridization in Graphite , 2012 .

[15]  J. Schmalian,et al.  Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene. , 2011, Physical review letters.

[16]  Mun Seok Jeong,et al.  Negative and positive persistent photoconductance in graphene. , 2011, Nano letters.

[17]  W. Stręk,et al.  White emission of lithium ytterbium tetraphosphate nanocrystals. , 2011, Optics express.

[18]  Steven G. Louie,et al.  Controlling inelastic light scattering quantum pathways in graphene , 2011, Nature.

[19]  G. Eda,et al.  Graphene oxide as a chemically tunable platform for optical applications. , 2010, Nature chemistry.

[20]  K. Nasu,et al.  Domain h Type Collective Dimerization of Graphite and Possible sp2rightarrow sp3Transition Induced by Inter h Layer Charge Transfer Excitations in the Visible Region , 2010 .

[21]  J. Shan,et al.  Ultrafast photoluminescence from graphene. , 2010, Physical review letters.

[22]  K. Nasu,et al.  Cooperative domain type interlayer sp 3 -bond formation in graphite , 2010, 1005.0874.

[23]  P. Ajayan,et al.  Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. , 2010, Nano letters.

[24]  L. Dai,et al.  Voltage-induced incandescent light emission from large-area graphene films , 2010 .

[25]  P. A. Tanner,et al.  Upconversion for white light generation by a single compound. , 2010, Journal of the American Chemical Society.

[26]  Keiichiro Nasu,et al.  Possible domain-type collective dimerization of graphite induced by interlayer charge transfer excitations in the visible region , 2010 .

[27]  K. Nasu,et al.  Early-stage real-time dynamics of interlayersp3-bond formation by visible-light irradiation of graphite , 2009 .

[28]  H. Ohnishi,et al.  Generation and growth ofsp3-bonded domains by visible photon irradiation of graphite , 2009 .

[29]  D. Guldi,et al.  Fullerene for organic electronics. , 2009, Chemical Society reviews.

[30]  H. Ohnishi,et al.  Photoinduced domain-type collective structural changes with interlayerσ-bonds in the visible region of graphite , 2009 .

[31]  H. Ohnishi,et al.  Formation of sp3-bonded carbon nanostructures by femtosecond laser excitation of graphite. , 2009, Physical review letters.

[32]  C. Ruan,et al.  Direct observation of optically induced transient structures in graphite using ultrafast electron crystallography. , 2008, Physical review letters.

[33]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[34]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[35]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[36]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[37]  K. Nasu,et al.  THEORY OF PHOTOINDUCED PHASE TRANSITION IN THE QUASI-ONE-DIMENSIONAL CHARGE TRANSFER COMPOUND TTF-CA , 2001 .

[38]  M. Dresselhaus,et al.  FULLERENES AND FULLERENE­ DERIVED SOLIDS AS ELECTRONIC MATERIALS , 1995 .

[39]  T. Ueda,et al.  Optical analytical technique for carbonaceous particles using laser-induced electro-avalanche fluorescence and laser-induced incandescence , 2013 .

[40]  K. Nasu,et al.  Domain-Type Collective Dimerization of Graphite and Possible sp 2 → sp 3 Transition Induced by InterLayer Charge Transfer Excitations in the Visible Region , 2010 .