Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition

The real and imaginary parts of third-order nonlinear susceptibility χ(3) have been measured for silicon nanocrystals embedded in SiO2 matrix, formed by high temperature annealing of SiOx films prepared by plasma-enhanced chemical vapor deposition. Measurements have been performed using a femtosecond Ti–sapphire laser at 813 nm using the Z-scan technique with maximum peak intensities up to 2×1010 W/cm2. The real part of χ(3) shows positive nonlinearity for all samples. Intensity-dependent nonlinear absorption is observed and attributed to two-photon absorption processes. The absolute value of χ(3) is on the order of 10−9 esu and shows a systematic increase as the silicon nanocrystalline size decreases. This is due to quantum confinement effects.

[1]  Domenico Pacifici,et al.  Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals , 2001 .

[2]  S. Ossicini,et al.  Porous silicon: a quantum sponge structure for silicon based optoelectronics , 2000 .

[3]  John F. Reintjes,et al.  Indirect Two-Photon Transitions in Si at 1.06 μm , 1973 .

[4]  Mendoza,et al.  Enhancement of the third-order nonlinear optical susceptibility in Si quantum wires. , 1993, Physical review. B, Condensed matter.

[5]  Robert R. Alfano,et al.  Optical Kerr effect in liquids , 1979 .

[6]  Z. Iqbal,et al.  Artificial dielectrics: Nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix , 1998 .

[7]  Burt,et al.  Below-band-gap third-order optical nonlinearity of nanometer-size semiconductor crystallites. , 1992, Physical review letters.

[8]  J. Wynne,et al.  Optical Third-Order Mixing in GaAs, Ge, Si, and InAs , 1969 .

[9]  Werner J. Blau,et al.  Third-order optical nonlinearity and all-optical switching in porous silicon , 1995 .

[10]  Michael C. Downer,et al.  Two-photon spectroscopy of silicon using femtosecond pulses at above-gap frequencies , 1990 .

[11]  H. Grebel,et al.  Artificial dielectrics: Nonlinear optical properties of silicon nanoclusters at λ=532 nm , 1997 .

[12]  Z. Gaburro,et al.  Structural and optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition. , 2001, Journal of nanoscience and nanotechnology.

[13]  Carmen N. Afonso,et al.  Nanocrystal size dependence of the third-order nonlinear optical response of Cu:Al2O3 thin films , 1999 .

[14]  L. Sangaletti,et al.  Optical and morphological characterization of Si nanocrystals/silica composites prepared by sol–gel processing , 2001 .

[15]  Nakayama,et al.  Two-photon-absorption spectra originating from higher-energy transitions. , 1994, Physical review. B, Condensed matter.

[16]  E. M. Vogel,et al.  Nonlinear optical phenomena in glass , 1991 .

[17]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[18]  P. Maddalena,et al.  Nonlinear optical refraction of free-standing porous silicon layers , 1999 .

[19]  Nakayama,et al.  Ab initio calculations of two-photon absorption spectra in semiconductors. , 1995, Physical review. B, Condensed matter.

[20]  H. Grebel,et al.  Nonlinear optical response of Si nanostructures in a silica matrix , 2000 .

[21]  Yaochun Shen Principles of nonlinear optics , 1984 .

[22]  Alain Haché,et al.  Ultrafast all-optical switching in a silicon-based photonic crystal , 2000 .

[23]  H. Grebel,et al.  Nonlinear optical properties of silicon nanoclusters , 1997 .

[24]  David A. B. Miller,et al.  Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. , 1987, Physical review. B, Condensed matter.

[25]  Fabio Iacona,et al.  Correlation between luminescence and structural properties of Si nanocrystals , 2000 .

[26]  E. W. Stryland,et al.  High-sensitivity, single-beam n(2) measurements. , 1989, Optics letters.

[27]  Hao,et al.  Efficient infrared-upconversion luminescence in porous silicon: A quantum-confinement-induced effect. , 1992, Physical review letters.