Optimised quantum hacking of superconducting nanowire single-photon detectors.

We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.

[1]  R. Hadfield,et al.  A superconducting nanowire single photon detector on lithium niobate , 2012, Nanotechnology.

[2]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[3]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[4]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[5]  Sae Woo Nam,et al.  Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.

[6]  V. Anant,et al.  Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors , 2007, IEEE Transactions on Applied Superconductivity.

[7]  J. F. Dynes,et al.  Response to “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography’” [Appl. Phys. Lett. 99, 196101 (2011)] , 2011, 1109.3149.

[8]  Michael G. Tanner,et al.  Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon , 2010 .

[9]  V. Makarov Controlling passively quenched single photon detectors by bright light , 2007, 0707.3987.

[10]  Masahide Sasaki,et al.  Analysis of detector performance in a gigahertz clock rate quantum key distribution system , 2011 .

[11]  P. D. Townsend,et al.  Quantum key distribution on a 10Gb/s WDM-PON , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[12]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[13]  Andrew G. Glen,et al.  APPL , 2001 .

[14]  N. Gisin,et al.  Continuous high speed coherent one-way quantum key distribution. , 2009, Optics express.

[15]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[16]  Faraz Najafi,et al.  Single-photon detectors based on ultranarrow superconducting nanowires. , 2010, Nano letters.

[17]  A R Dixon,et al.  Continuous operation of high bit rate quantum key distribution , 2010, 1005.4573.

[18]  Dag R. Hjelme,et al.  Faked states attack on quantum cryptosystems , 2005 .

[19]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[20]  Sae Woo Nam,et al.  Quantum key distribution at 1550 nm with twin superconducting single-photon detectors , 2006 .

[21]  J. F. Dynes,et al.  Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography , 2011, 1106.2675.

[22]  Z. Yuan,et al.  Quantum key distribution over 122 km of standard telecom fiber , 2004, quant-ph/0412171.

[23]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[24]  T Honjo,et al.  Long-distance entanglement-based quantum key distribution over optical fiber. , 2008, Optics express.

[25]  Jian-Wei Pan,et al.  Decoy-state quantum key distribution with polarized photons over 200 km. , 2010, Optics express.

[26]  Aaron J. Miller,et al.  Low-frequency phase locking in high-inductance superconducting nanowires , 2005 .

[27]  Mu-Sheng Jiang,et al.  Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems , 2013 .

[28]  J. Skaar,et al.  Controlling a superconducting nanowire single-photon detector using tailored bright illumination , 2011, 1106.2396.

[29]  Richard J. Hughes,et al.  Practical long-distance quantum key distribution system using decoy levels , 2008, 0806.3085.

[30]  J. Skaar,et al.  Tailored bright illumination attack on distributed-phase-reference protocols , 2010, 1012.4366.

[31]  R. Hadfield,et al.  Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector , 2014, 1402.2879.

[32]  S. Marchetti,et al.  Timing jitter of cascade switch superconducting nanowire single photon detectors , 2009 .

[33]  Vadim Makarov,et al.  Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography” [Appl. Phys. Lett. 98, 231104 (2011)] , 2011, 1106.3756.

[34]  C. M. Natarajan,et al.  Superconducting nanowire single-photon detectors: physics and applications , 2012, 1204.5560.

[35]  Jian Wang,et al.  Decoy-state quantum key distribution with polarized photons over 200 km. , 2009, Optics express.

[36]  Yoshihisa Yamamoto,et al.  Differential phase shift quantum key distribution. , 2002 .

[37]  Shigehito Miki,et al.  Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors , 2010 .

[38]  Francesco Mattioli,et al.  A cascade switching superconducting single photon detector , 2007 .

[39]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[40]  H. Weinfurter,et al.  Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors , 2011, 1101.5289.

[41]  Masahide Sasaki,et al.  Countermeasure against tailored bright illumination attack for DPS-QKD. , 2013, Optics express.

[42]  R. J. Collins,et al.  Low timing jitter detector for gigahertz quantum key distribution , 2007 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  Masahide Sasaki,et al.  Characteristics of superconducting single photon detector in DPS-QKD system under bright illumination blinding attack. , 2013, Optics express.

[45]  Charles H. Herder,et al.  Electrothermal simulation of superconducting nanowire avalanche photodetectors , 2010, 1012.3964.

[46]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[47]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[48]  B. Baek,et al.  Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization. , 2008, Optics express.

[49]  J. Skaar,et al.  Laser damage helps the eavesdropper in quantum cryptography. , 2013, Physical review letters.

[50]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[51]  A R Dixon,et al.  Field test of quantum key distribution in the Tokyo QKD Network. , 2011, Optics express.

[52]  N. Gisin,et al.  High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres , 2009, 0903.3907.

[53]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[54]  J. Skaar,et al.  Thermal blinding of gated detectors in quantum cryptography. , 2010, Optics express.

[55]  H. Lo,et al.  Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors , 2013, 1306.3749.

[56]  Yann Thoma,et al.  High speed coherent one-way quantum key distribution prototype , 2008 .

[57]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[58]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[59]  Michael G. Tanner,et al.  Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector , 2011 .

[60]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[61]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[62]  Wei Chen,et al.  2 GHz clock quantum key distribution over 260 km of standard telecom fiber. , 2012, Optics letters.