Portfolio Value-at-Risk Optimization for Asymmetrically Distributed Asset Returns

We propose a new approach to portfolio optimization by separating asset return distributions into positive and negative half-spaces. The approach minimizes a newly-defined Partitioned Value-at-Risk (PVaR) risk measure by using half-space statistical information. Using simulated data, the PVaR approach always generates better risk-return tradeoffs in the optimal portfolios when compared to traditional Markowitz mean–variance approach. When using real financial data, our approach also outperforms the Markowitz approach in the risk-return tradeoff. Given that the PVaR measure is also a robust risk measure, our new approach can be very useful for optimal portfolio allocations when asset return distributions are asymmetrical.

[1]  Masao Fukushima,et al.  Portfolio selection under distributional uncertainty: A relative robust CVaR approach , 2010, Eur. J. Oper. Res..

[2]  Melvyn Sim,et al.  Constructing Risk Measures from Uncertainty Sets , 2009, Oper. Res..

[3]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[4]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[5]  G. Pflug,et al.  Value-at-Risk in Portfolio Optimization: Properties and Computational Approach ⁄ , 2005 .

[6]  C. Machado-Santos,et al.  Skewness in Financial Returns: Evidence from the Portuguese Stock Market , 2000 .

[7]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[8]  Todd Mitton,et al.  Equilibrium Underdiversification and the Preference for Skewness , 2004 .

[9]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[10]  Anil K. Bera,et al.  Efficient tests for normality, homoscedasticity and serial independence of regression residuals , 1980 .

[11]  Campbell R. Harvey,et al.  Conditional Skewness in Asset Pricing Tests , 1999 .

[12]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[13]  Juuso Töyli,et al.  Essays on asset return distributions , 2002 .

[14]  W. L. Beedles,et al.  Diversification in a Three-Moment World , 1978, Journal of Financial and Quantitative Analysis.

[15]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[16]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[17]  Melvyn Sim,et al.  Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization , 2008, Manag. Sci..

[18]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[19]  Kristiaan Kerstens,et al.  Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function , 2011, Eur. J. Oper. Res..

[20]  John Knight,et al.  Return Distributions in Finance , 2000 .

[21]  Robert F. Dittmar Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross Section of Equity Returns , 2002 .

[22]  Robert F. Dittmar,et al.  Skewness and the Bubble , 2008 .

[23]  Thomas M. Arnold Stocks as Lotteries: The Implications of Probability Weighting for Security Prices , 2009 .

[24]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[25]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[26]  Francisco J. Nogales,et al.  Portfolio Selection With Robust Estimation , 2007, Oper. Res..

[27]  Maurry Tamarkin,et al.  On Diversification Given Asymmetry in Returns , 1981 .

[28]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[29]  W. L. Beedles,et al.  Asymmetric Stable Distributed Security Returns , 1980 .

[30]  A. Charnes,et al.  Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil , 1958 .

[31]  Panos M. Pardalos,et al.  Financial Engineering, E-commerce and Supply Chain , 2010 .

[32]  Fred D. Arditti RISK AND THE REQUIRED RETURN ON EQUITY , 1967 .

[33]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[34]  W. N. Street,et al.  Financial Data and the Skewed Generalized T Distribution , 1998 .

[35]  R. Litzenberger,et al.  SKEWNESS PREFERENCE AND THE VALUATION OF RISK ASSETS , 1976 .

[36]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[37]  John L. Kling,et al.  Regularities in the Variation of Skewness in Asset Returns , 1994 .

[38]  Masao Fukushima,et al.  Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management , 2009, Oper. Res..

[39]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[40]  Stanley J. Kon Models of Stock Returns—A Comparison , 1984 .

[41]  Li Chen,et al.  Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection , 2011, Oper. Res..

[42]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[43]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[44]  L. Goddard,et al.  Operations Research (OR) , 2007 .

[45]  J. Tobin Liquidity Preference as Behavior towards Risk , 1958 .

[46]  Helmut Mausser,et al.  ALGORITHMS FOR OPTIMIZATION OF VALUE­ AT-RISK* , 2002 .

[47]  G. Chamberlain A characterization of the distributions that imply mean—Variance utility functions☆ , 1983 .

[48]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[49]  Raj Aggarwal,et al.  Skewness And Kurtosis In Japanese Equity Returns: Empirical Evidence , 1989 .

[50]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[51]  Toshinao Yoshiba,et al.  On the Validity of Value-at-Risk: Comparative Analyses with Expected Shortfall , 2002 .

[52]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .

[53]  Bruce D. Phelps New Perspectives on Emerging Market Bonds , 1999 .

[54]  Campbell R. Harvey,et al.  Distributional Characteristics of Emerging Market Returns and Asset Allocation , 1998 .

[55]  Philip A. Horvath,et al.  On The Direction of Preference for Moments of Higher Order Than The Variance , 1980 .