Analysis of ongoing EEG elicited by natural music stimuli using nonnegative tensor factorization

This study proposes a six-step approach to analyze ongoing EEG elicited by 512-second long natural music (modern tango). The spectrogram of the ongoing EEG was first produced, and then a fourth-order tensor including the spectrograms of multiple channels of multiple participants was decomposed via nonnegative tensor factorization (NTF) into four factors, including temporal, spectral and spatial components, and multi-domain features of all participants. We found one extracted temporal component by NTF significantly (p <; 0.01) correlated with the temporal course of a long-term music feature, `fluctuation centroid' moreover, the power of posterior alpha activity was found to be associated with this temporal component. Hence, it looks promising to apply the proposed method for analyzing other ongoing EEG elicited by other natural stimuli.

[1]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[2]  Liqing Zhang,et al.  Noninvasive BCIs: Multiway Signal-Processing Array Decompositions , 2008, Computer.

[3]  Saeid Sanei,et al.  EEG signal processing , 2000, Clinical Neurophysiology.

[4]  D. Abrams,et al.  Right-Hemisphere Auditory Cortex Is Dominant for Coding Syllable Patterns in Speech , 2008, The Journal of Neuroscience.

[5]  H. Kiers,et al.  Three-mode principal components analysis: choosing the numbers of components and sensitivity to local optima. , 2000, The British journal of mathematical and statistical psychology.

[6]  L. K. Hansen,et al.  Sparse Coding and Automatic Relevance Determination for Multiway models , 2009 .

[7]  Desney S. Tan,et al.  Brain-Computer Interfaces: Applying our Minds to Human-Computer Interaction , 2010 .

[8]  P. Davis,et al.  ELECTRICAL REACTIONS OF THE HUMAN BRAIN TO AUDITORY STIMULATION DURING SLEEP , 1939 .

[9]  Petri Toiviainen,et al.  MIR in Matlab (II): A Toolbox for Musical Feature Extraction from Audio , 2007, ISMIR.

[10]  Tapani Ristaniemi,et al.  Multi-domain Feature of Event-Related Potential Extracted by Nonnegative Tensor Factorization: 5 vs 14 Electrodes EEG Data , 2012, LVA/ICA.

[11]  R. Ward,et al.  EMG and EOG artifacts in brain computer interface systems: A survey , 2007, Clinical Neurophysiology.

[12]  Tapani Ristaniemi,et al.  Answering six questions in extracting children’s mismatch negativity through combining wavelet decomposition and independent component analysis , 2011, Cognitive Neurodynamics.

[13]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[14]  H. Berger Über das Elektrenkephalogramm des Menschen , 1933, Archiv für Psychiatrie und Nervenkrankheiten.

[15]  R. Bro,et al.  A new efficient method for determining the number of components in PARAFAC models , 2003 .

[16]  E. Basar,et al.  Event-related oscillations are 'real brain responses'--wavelet analysis and new strategies. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[17]  R. Schaefer,et al.  Music perception and imagery in EEG: alpha band effects of task and stimulus. , 2011, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[18]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[19]  C. Grau,et al.  Theta EEG oscillatory activity and auditory change detection , 2008, Brain Research.

[20]  Erol Başar,et al.  Sensory evoked and event related oscillations in Alzheimer’s disease: a short review , 2010, Cognitive Neurodynamics.

[21]  Andrzej Cichocki,et al.  Nonnegative Tensor Factorization for Continuous EEG Classification , 2007, Int. J. Neural Syst..

[22]  Mikko Sams,et al.  Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm , 2012, NeuroImage.

[23]  Terence W. Picton,et al.  Envelope and spectral frequency-following responses to vowel sounds , 2008, Hearing Research.

[24]  Heikki Lyytinen,et al.  Classifying Healthy Children and Children with Attention Deficit through Features Derived from Sparse and Nonnegative Tensor Factorization Using Event-Related Potential , 2010, LVA/ICA.

[25]  A. Cichocki,et al.  An empirical EEG analysis in brain death diagnosis for adults , 2008, Cognitive Neurodynamics.

[26]  Hans Berger,et al.  Über das Elektrenkephalogramm des Menschen , 1932, Archiv für Psychiatrie und Nervenkrankheiten.

[27]  Liqing Zhang,et al.  Generalized optimal spatial filtering using a kernel approach with application to EEG classification , 2010, Cognitive Neurodynamics.

[28]  Kyuwan Choi,et al.  Detecting the Number of Clusters in n-Way Probabilistic Clustering , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  T. Sejnowski,et al.  Linking brain, mind and behavior. , 2008, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[30]  E. John,et al.  Electroencephalography: Basic Principles and Applications , 2001 .