Exploring Hybrid Mg2+/H+ Reactions of C@MgMnSiO4 with Boosted Voltage in Magnesium-ion Batteries

[1]  R. Liu,et al.  Reversible Multi-Electron Storage Enabled by Na5V(PO4)2F2 for Rechargeable Magnesium Batteries , 2021 .

[2]  Aobing Du,et al.  A Novel Regulation Strategy of Solid Electrolyte Interphase Based on Anion-Solvent Coordination for Magnesium Metal Anode. , 2020, Small.

[3]  J. Cabana,et al.  Does Water Enhance Mg Intercalation in Oxides? The Case of a Tunnel Framework , 2020 .

[4]  Yong Yang,et al.  Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries , 2020 .

[5]  C. Ban,et al.  Strategies to Enable Reversible Magnesium Electrochemistry: From Electrolytes to Artificial Solid-Electrolyte Interphase. , 2020, Angewandte Chemie.

[6]  H. Duan,et al.  The stability of P2-layered sodium transition metal oxides in ambient atmospheres , 2020, Nature Communications.

[7]  A. Manthiram,et al.  Multivalent-Ion versus Proton Insertion into Battery Electrodes , 2020 .

[8]  Kathleen Moyer,et al.  Kinetic- versus Diffusion-Driven Three-Dimensional Growth in Magnesium Metal Battery Anodes , 2020 .

[9]  Yong Yang,et al.  Highly-stable P2–Na0.67MnO2 electrode enabled by lattice tailoring and surface engineering , 2020 .

[10]  Yanrong Wang,et al.  π-Conjugated polyimide-based organic cathodes with extremely-long cycling life for rechargeable magnesium batteries , 2020 .

[11]  Y. Hu,et al.  Hybrid Mg/Li-ion batteries enabled by Mg2+/Li+ co-intercalation in VS4 nanodendrites , 2019, Energy Storage Materials.

[12]  Yong Yang,et al.  Exploring the high-voltage Mg2+/Na+ co-intercalation reaction of Na3VCr(PO4)3 in Mg-ion batteries , 2019, Journal of Materials Chemistry A.

[13]  J. Dahn,et al.  Analysis of Thousands of Electrochemical Impedance Spectra of Lithium-Ion Cells through a Machine Learning Inverse Model , 2019, Journal of The Electrochemical Society.

[14]  Renpeng Chen,et al.  One‐Step Synthesis of 2‐Ethylhexylamine Pillared Vanadium Disulfide Nanoflowers with Ultralarge Interlayer Spacing for High‐Performance Magnesium Storage , 2019, Advanced Energy Materials.

[15]  C. Ouyang,et al.  The effect of protons on the Mg2+ migration in an α-V2O5 cathode for magnesium batteries: a first-principles investigation. , 2019, Physical chemistry chemical physics : PCCP.

[16]  G. F. Ortiz,et al.  On the Beneficial Effect of MgCl2 as Electrolyte Additive to Improve the Electrochemical Performance of Li4Ti5O12 as Cathode in Mg Batteries , 2019, Nanomaterials.

[17]  M. R. Palacín,et al.  On the strange case of divalent ions intercalation in V2O5 , 2018, Journal of Power Sources.

[18]  T. Chen,et al.  Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO2- x Nanoflakes for High-Performance Rechargeable Magnesium Batteries. , 2018, ACS nano.

[19]  S. Hou,et al.  A critical review of cathodes for rechargeable Mg batteries. , 2018, Chemical Society reviews.

[20]  Siân E Dutton,et al.  The Role of Ionic Liquid Breakdown in the Electrochemical Metallization of VO2: An NMR Study of Gating Mechanisms and VO2 Reduction. , 2018, Journal of the American Chemical Society.

[21]  Yong Yang,et al.  Research Progress in Multielectron Reactions in Polyanionic Materials for Sodium‐Ion Batteries , 2018, Small Methods.

[22]  Xi Cao,et al.  Low-Cost Aqueous Magnesium-Ion Battery Capacitor with Commercial Mn3 O4 and Activated Carbon , 2018, ChemElectroChem.

[23]  T. Chen,et al.  Highly Branched VS4 Nanodendrites with 1D Atomic‐Chain Structure as a Promising Cathode Material for Long‐Cycling Magnesium Batteries , 2018, Advanced materials.

[24]  M. E. A. Dompablo,et al.  Comparative Investigation of MgMnSiO4 and Olivine-Type MgMnSiS4 as Cathode Materials for Mg Batteries , 2018 .

[25]  Yuyan Shao,et al.  25Mg NMR and computational modeling studies of the solvation structures and molecular dynamics in magnesium based liquid electrolytes , 2018 .

[26]  I. Honma,et al.  Nanocrystalline MgMnSiO 4 and MgCoSiO 4 particles for rechargeable Mg-ion batteries , 2017 .

[27]  Rahul Malik,et al.  Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. , 2017, Chemical reviews.

[28]  K. Persson,et al.  Concentration dependent electrochemical properties and structural analysis of a simple magnesium electrolyte: magnesium bis(trifluoromethane sulfonyl)imide in diglyme , 2016 .

[29]  D. Dixon,et al.  In Situ Natural Abundance 17O and 25Mg NMR Investigation of Aqueous Mg(OH)2 Dissolution in the Presence of Supercritical CO2. , 2016, Environmental science & technology.

[30]  O. Løvvik,et al.  Comparing electrochemical perormance of transition metal silicate cathodes and chevrel phase Mo6S8 in the analogous rechargeable Mg-ion battery system , 2016 .

[31]  Watchareeya Kaveevivitchai,et al.  High Capacity Rechargeable Magnesium-Ion Batteries Based on a Microporous Molybdenum–Vanadium Oxide Cathode , 2016 .

[32]  T. Masese,et al.  Anti-site mixing governs the electrochemical performances of olivine-type MgMnSiO4 cathodes for rechargeable magnesium batteries. , 2016, Physical chemistry chemical physics : PCCP.

[33]  Tiffany L. Kinnibrugh,et al.  Structural Evolution of Reversible Mg Insertion into a Bilayer Structure of V2O5·nH2O Xerogel Material , 2016 .

[34]  Chunsheng Wang,et al.  Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes , 2016 .

[35]  W. Richards,et al.  Role of Structural H2O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V2O5. , 2016, Nano letters.

[36]  J. Cabana,et al.  Phase-Controlled Electrochemical Activity of Epitaxial Mg-Spinel Thin Films. , 2015, ACS applied materials & interfaces.

[37]  D. Nihtianova,et al.  Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO4 covered with carbon black , 2015 .

[38]  J. Tarascon,et al.  Influence of relative humidity on the structure and electrochemical performance of sustainable LiFeSO4F electrodes for Li-ion batteries , 2015 .

[39]  Lei Cheng,et al.  Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes. , 2015, ACS applied materials & interfaces.

[40]  D. Buttry,et al.  Determination of Mg(2+) Speciation in a TFSI(-)-Based Ionic Liquid With and Without Chelating Ethers Using Raman Spectroscopy. , 2015, The journal of physical chemistry. B.

[41]  Seok-Gwang Doo,et al.  The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. , 2015, Nano letters.

[42]  Kwan-Woo Nam,et al.  Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries , 2015 .

[43]  J. Goodenough,et al.  Theoretical Study of the Structural Evolution of a Na2FeMn(CN)6 Cathode upon Na Intercalation , 2015, Chemistry of Materials.

[44]  Ya‐Xia Yin,et al.  Improving the electrochemical performance of the li4 ti5 o12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. , 2015, Angewandte Chemie.

[45]  Yan Yao,et al.  Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. , 2015, Nano letters.

[46]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[47]  Eleanor I. Gillette,et al.  Activation of a MnO2 cathode by water-stimulated Mg(2+) insertion for a magnesium ion battery. , 2015, Physical chemistry chemical physics : PCCP.

[48]  Ki Jae Kim,et al.  Copper incorporated CuxMo6S8 (x ≥ 1) Chevrel-phase cathode materials synthesized by chemical intercalation process for rechargeable magnesium batteries , 2014 .

[49]  D. Prendergast,et al.  The solvation structure of Mg ions in dichloro complex solutions from first-principles molecular dynamics and simulated X-ray absorption spectra. , 2014, Journal of the American Chemical Society.

[50]  Ya‐Xia Yin,et al.  A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries , 2014 .

[51]  Takuya Mori,et al.  High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements , 2014, Scientific Reports.

[52]  Yongchang Liu,et al.  Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. , 2013, Nanoscale.

[53]  D. Aurbach,et al.  Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[54]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[55]  C. Delmas,et al.  Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3) , 2012 .

[56]  Rana Mohtadi,et al.  Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery** , 2012, Angewandte Chemie.

[57]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[58]  C. Ling,et al.  First-principles study of the magnesiation of olivines: redox reaction mechanism, electrochemical and thermodynamic properties , 2012 .

[59]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[60]  Jiulin Wang,et al.  Magnesium cobalt silicate materials for reversible magnesium ion storage , 2012 .

[61]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[62]  Jiulin Wang,et al.  MWNT/C/Mg1.03Mn0.97SiO4 hierarchical nanostructure for superior reversible magnesium ion storage , 2011 .

[63]  Yong Yang,et al.  Recent advances in the research of polyanion-type cathode materials for Li-ion batteries , 2011 .

[64]  Jiulin Wang,et al.  Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries , 2011 .

[65]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[66]  Jiulin Wang,et al.  MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable magnesium batteries , 2011 .

[67]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[68]  C. Delmas,et al.  Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2 , 2010 .

[69]  Jiulin Wang,et al.  Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. , 2010, Chemical communications.

[70]  A. Wokaun,et al.  On the use of activated carbon as a quasi-reference electrode in non-aqueous electrolyte solutions , 2009 .

[71]  Ilias Belharouak,et al.  Structural and electrochemical characterization of Li{sub 2}MnSiO{sub 4} cathode material. , 2009 .

[72]  Jiulin Wang,et al.  Electrochemical Intercalation of Mg2+ in Magnesium Manganese Silicate and Its Application as High-Energy Rechargeable Magnesium Battery Cathode , 2009 .

[73]  Jiulin Wang,et al.  Sol–gel synthesis of Mg1.03Mn0.97SiO4 and its electrochemical intercalation behavior , 2008 .

[74]  Jiulin Wang,et al.  Preparation and electrochemical study of a new magnesium intercalation material Mg1.03Mn0.97SiO4 , 2008 .

[75]  E. Zhecheva,et al.  Comparative analysis of the changes in local Ni/Mn environment in lithium–nickel–manganese oxides with layered and spinel structure during electrochemical extraction and reinsertion of lithium , 2007 .

[76]  S. Vassilev,et al.  Mn4+ environment in layered Li[Mg0.5−xNixMn0.5]O2 oxides monitored by EPR spectroscopy , 2006 .

[77]  E. Zhecheva,et al.  Changes in local Ni/Mn environment in layered LiMgxNi0.5−xMn0.5O2 (0 ≤x≤ 0.10) after electrochemical extraction and reinsertion of lithium , 2006 .

[78]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[79]  C. Grey,et al.  Nuclear Magnetic Resonance Studies of Lithium-Ion Battery Materials , 2002 .

[80]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[81]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[82]  L. Bulhões,et al.  Charging processes and electrocatalytic properties of IrO2/TiO2/SnO2 oxide films investigated by in situ AC impedance measurements , 1999 .

[83]  J. Dahn,et al.  Lithium Intercalation from Aqueous Solutions , 1994 .

[84]  T. Gregory,et al.  Nonaqueous Electrochemistry of Magnesium Applications to Energy Storage , 1990 .

[85]  Dongwook Han,et al.  High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries , 2015 .

[86]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[87]  Cenr A. FReNcIs The forsterite-tephroite series : I . Crystal structure refinements , 2007 .