Goos-Hänchen Shift and Even-Odd Peak Oscillations in Edge-Reflections of Surface Polaritons in Atomically Thin Crystals.

Two-dimensional surface polaritons (2DSPs), such as graphene plasmons, exhibit various unusual properties, including electrical tunability and strong spatial confinement with high Q-factor, which can enable tunable photonic devices for deep subwavelength light manipulations. Reflection of plasmons at the graphene's edge plays a critical role in the manipulation of 2DSP and enables their direct visualization in near-field infrared microscopy. However, a quantitative understanding of the edge-reflections, including reflection phases and diffraction effects, has remained elusive. Here, we show theoretically and experimentally that edge-reflection of 2DSP exhibits unusual behaviors due to the presence of the evanescent waves, including an anomalous Goos-Hänchen phase shift as in total internal reflections and an unexpected even-odd peak amplitude oscillation from the wave diffraction at the edge. Our theory is not only valid for plasmons in graphene but also for other 2D polaritons, such as phonon polaritons in ultrathin boron nitride flakes and exciton polariton in two-dimensional semiconductors.

[1]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[2]  James Hone,et al.  Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene , 2016, Nature Photonics.

[3]  H. Bechtel,et al.  Amplitude- and Phase-Resolved Nanospectral Imaging of Phonon Polaritons in Hexagonal Boron Nitride , 2015 .

[4]  Ryan Beams,et al.  Voltage-controlled quantum light from an atomically thin semiconductor. , 2015, Nature nanotechnology.

[5]  X. Duan,et al.  Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide , 2015, Nature Communications.

[6]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[7]  G. Vignale,et al.  Plasmon losses due to electron-phonon scattering: The case of graphene encapsulated in hexagonal boron nitride , 2014, 1408.1653.

[8]  C. S. Chang,et al.  Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers , 2014, Science.

[9]  T. Low,et al.  Anomalous reflection phase of graphene plasmons and its influence on resonators , 2014, 1406.7335.

[10]  M. Raschke,et al.  Phase-resolved surface plasmon interferometry of graphene. , 2014, Physical review letters.

[11]  S. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[12]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[13]  P. Ajayan,et al.  Excitation and active control of propagating surface plasmon polaritons in graphene. , 2013, Nano letters.

[14]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[15]  A. Cabellos-Aparicio,et al.  Graphene-based nano-patch antenna for terahertz radiation , 2012 .

[16]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[17]  F. Xia,et al.  Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. , 2012, Nano letters.

[18]  Jagjit Nanda,et al.  Atomically localized plasmon enhancement in monolayer graphene. , 2012, Nature nanotechnology.

[19]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[20]  C. N. Lau,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[21]  S. Thongrattanasiri,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[22]  M. Brongersma,et al.  Metal-dielectric-metal surface plasmon-polariton resonators , 2012 .

[23]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[24]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[25]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[26]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[27]  Reuven Gordon,et al.  Light in a subwavelength slit in a metal: Propagation and reflection , 2006 .

[28]  Nader Engheta,et al.  Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes , 2006, physics/0603052.

[29]  Mark L Brongersma,et al.  Dielectric waveguide model for guided surface polaritons. , 2005, Optics letters.

[30]  J. Jackson Classical Electrodynamics, 3rd Edition , 1998 .

[31]  B. Fischer,et al.  Calculation of surface exciton polariton spectra and comparison with experiments , 1976 .

[32]  C. H. Perry,et al.  Normal Modes in Hexagonal Boron Nitride , 1966 .

[33]  D. A. Kleinman,et al.  Infrared Properties of Hexagonal Silicon Carbide , 1959 .