Evolving WAAS to Serve L1/L5 Users

GPS has launched its first L5 capable satellites and plans to achieve L5 Full Operational Capability (FOC) in the 2019 time frame. L5 is of great interest to the Wide Area Augmentation System (WAAS) and the aviation community, as it will allow aircraft to measure and remove the ionospheric delay affecting each ranging observation. Currently, this error source is the most significant cause of unavailability for WAAS users. Its elimination will result in greater performance and a larger service area under WAAS. However, in order to take advantage of L5, both the aircraft and WAAS will need to be updated. We have previously recommended changes to the airborne protection level calculations to exploit these new signals. In this paper we describe changes that should then be made to WAAS to support the new protection level equations and provide dual-frequency service. Copyright © 2012 Institute of Navigation

[1]  Michael H. Rivers 2 SOPS Anomaly Resolution on an Aging Constellation , 2000 .

[2]  Per Enge,et al.  Characterizing Nominal Analog Signal Deformation on GNSS Signals , 2009 .

[3]  Robert M. Fries,et al.  WAAS Algorithm Contribution to Hazardously Misleading Information (HMI) , 2001 .

[4]  Per Enge,et al.  Availability Benefit of Future Dual Frequency GPS Avionics under Strong Ionospheric Scintillation , 2009 .

[5]  Per Enge,et al.  Bounding higher‐order ionosphere errors for the dual‐frequency GPS user , 2006 .

[6]  Deborah Lawrence,et al.  Wide Area Augmentation System (WAAS) - Program Status , 2007 .

[7]  Jon Little,et al.  Summary of accuracy improvements from the GPS Legacy Accuracy Improvement Initiative (L-AII) , 2007 .

[8]  Po-Hsin Hsu,et al.  Test results for the WAAS Signal Quality Monitor , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[9]  Mohammed Mainul Hoque,et al.  Higher order ionospheric effects in precise GNSS positioning , 2007 .

[10]  Per Enge,et al.  Ionospheric Threat Parameterization for Local Area Global-Positioning-System-Based Aircraft Landing Systems , 2010 .

[11]  David C. Jefferson,et al.  Accuracy and consistency of broadcast GPS ephemeris data , 2000 .

[12]  T. Walter,et al.  Protecting Against Unsampled Ionospheric Threats , 2005 .

[13]  Richard B. Langley,et al.  The residual tropospheric propagation delay: How bad can it get? , 1998 .

[14]  William A. Feess,et al.  New and Improved - The Broadcast Interfrequency Biases , 1999 .

[15]  Per Enge,et al.  Integrity Lessons from the WAAS Integrity Performance Panel (WIPP) , 2003 .

[16]  Per Enge,et al.  The WAAS ionospheric threat model , 2001 .

[17]  Per Enge,et al.  Statistical characterization of GPS signal-in-space errors , 2011 .

[18]  Karl Shallberg,et al.  WAAS Measurement Processing, Reducing the Effects of Multipath , 2001 .

[19]  Karl Shallberg,et al.  Considerations for Characterizing Antenna Induced Range Errors , 2002 .

[20]  D. Ormand Wide Area Augmentation System (WAAS) , 1999 .

[21]  John W. Lavrakas,et al.  GPS Integrity: An MCS Perspective , 1993 .

[22]  Per Enge,et al.  Ionospheric Threat Parameterization for Local Area GPS-Based Aircraft Landing Systems , 2010 .

[23]  Peter Steigenberger,et al.  Three's the challenge: A close look at GPS SVN62 triple-frequency signal combinations finds carrier-phase variations on the new L5 , 2010 .

[24]  Boris Pervan,et al.  Ephemeris Failure Rate Analysis and its Impact on Category I LAAS Integrity , 2007 .

[25]  Ronald Braff,et al.  The FAA's Local Area Augmentation System (LAAS) , 1997 .

[26]  Fang Sheng,et al.  WAAS measurement processing; current design and potential improvements , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[27]  John F. Raquet,et al.  Broadcast vs. precise GPS ephemerides: a historical perspective , 2002 .

[28]  T. Walter,et al.  Correlation Structure of the Equatorial Ionosphere , 2004 .

[29]  Juan Blanch,et al.  Robust Detection of Ionospheric Irregularities , 2000 .

[30]  Per Enge,et al.  Bounding Errors Caused by Nominal GNSS Signal Deformations , 2011 .

[31]  Per Enge,et al.  Using WAAS Ionospheric Data to Estimate LAAS Short Baseline Gradients , 2002 .

[32]  Per Enge,et al.  GPS Signal-in-Space Anomalies in the Last Decade: Data Mining of 400,000,000 GPS Navigation Messages , 2010 .

[33]  B. J. Potter,et al.  WAAS Offline Monitoring , 2010 .