Robust synchronization and anti-synchronization of identical Φ6 oscillators via adaptive sliding mode control

Abstract The main goal of this paper is to propose the single input robust adaptive sliding mode controllers to accomplish synchronization and anti-synchronization between two identical Φ 6 Duffing or Van der Pol oscillators with unmodel dynamics and external disturbances. Unlike directly eliminating the nonlinear dynamics by active control and sliding mode control in the literature, the proposed sliding mode controllers include the equivalent control part, which is only proportional to the synchronized error states, and the switching control part, where the discontinuous control functions have adaptive feedback gains. Sufficient conditions are provided based on the Lyapunov stability theorem and numerical simulations are performed to verify the effectiveness of presented schemes.

[1]  M. Siewe Siewe,et al.  Resonant oscillation and homoclinic bifurcation in a Φ6-Van der Pol oscillator , 2004 .

[2]  J. Yan,et al.  Adaptive chattering free variable structure control for a class of chaotic systems with unknown bounded uncertainties , 2005 .

[3]  Zheng-Ming Ge,et al.  Rapid Communication Chaos synchronization of double Duffing systems with parameters excited by a chaotic signal , 2008 .

[4]  M. Zohdy,et al.  Recursive backstepping control of chaotic Duffing oscillators , 2007, Proceedings of the 2004 American Control Conference.

[5]  Zhujun Jing,et al.  Complex dynamics in Duffing–Van der Pol equation , 2006 .

[6]  Wenlin Li,et al.  Adaptive synchronization for a unified chaotic system with uncertainty , 2010 .

[7]  Paul Woafo,et al.  Active control with delay of vibration and chaos in a double-well Duffing oscillator , 2003 .

[8]  U. E. Vincent,et al.  Generalized Adaptive Backstepping Synchronization for Non-identical Parametrically Excited Systems , 2009 .

[9]  F. M. Moukam Kakmeni,et al.  Chaos control in the uncertain Duffing oscillator , 2006 .

[10]  A. N. Njah Synchronization via active control of identical and non-identical Φ6 chaotic oscillators with external excitation , 2009 .

[11]  Chi-Ching Yang,et al.  Adaptive synchronization of Lü hyperchaotic system with uncertain parameters based on single-input controller , 2011 .

[12]  Albert C. J. Luo,et al.  On resonant separatrix bands of a Duffing oscillator with a twin-well potential , 2003 .

[13]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[14]  Colin H. Hansen,et al.  Stability and dynamics of a controlled van der Pol-Duffing oscillator , 2006 .

[15]  Shihua Chen,et al.  Synchronizing the noise-perturbed unified chaotic system by sliding mode control , 2006 .

[16]  Li Ruihong,et al.  Chaos control and synchronization of the Φ6-Van der Pol system driven by external and parametric excitations , 2008 .

[17]  Nejib Smaoui,et al.  Synchronization of the unified chaotic systems using a sliding mode controller , 2009 .

[18]  Uchechukwu E. Vincent,et al.  Chaos synchronization between single and double wells Duffing–Van der Pol oscillators using active control , 2008 .

[19]  Bo Wang,et al.  On the synchronization of uncertain master–slave chaotic systems with disturbance , 2009 .

[20]  M. Rahimpour,et al.  Analytical solution for Van der Pol–Duffing oscillators , 2009 .

[21]  Yeong-Jeu Sun,et al.  Robust tracking control of uncertain Duffing–Holmes control systems , 2009 .

[22]  Chi-Ching Yang Adaptive control and synchronization of identical new chaotic flows with unknown parameters via single input , 2010, Appl. Math. Comput..

[23]  Uchechukwu E. Vincent,et al.  Synchronization of chaos in non-identical parametrically excited systems , 2009 .

[24]  A. N. Njah,et al.  Synchronization via active control of parametrically and externally excited Φ6 Van der Pol and Duffing oscillators and application to secure communications , 2011 .

[25]  Wei Zhang,et al.  Finite-time chaos synchronization of unified chaotic system with uncertain parameters , 2009 .

[26]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[27]  Yan Xu,et al.  Chaos synchronization and parameter estimation of single-degree-of-freedom oscillators via adaptive control , 2010 .

[28]  F. M. Moukam Kakmeni,et al.  Synchronizing chaotic dynamics with uncertainties using a predictable synchronization delay design , 2006 .

[29]  Giovanni Filatrella,et al.  STRANGE ATTRACTORS AND SYNCHRONIZATION DYNAMICS OF COUPLED VAN DER POL-DUFFING OSCILLATORS , 2008 .

[30]  Suwat Kuntanapreeda,et al.  Adaptive synchronization of hyperchaotic systems via passivity feedback control with time-varying gains , 2010 .

[31]  Wei Xu,et al.  Global synchronization of two parametrically excited systems using active control , 2006 .