Schnyder Woods for Higher Genus Triangulated Surfaces, with Applications to Encoding

Schnyder woods are a well-known combinatorial structure for plane triangulations, which yields a decomposition into three spanning trees. We extend here definitions and algorithms for Schnyder woods to closed orientable surfaces of arbitrary genus. In particular, we describe a method to traverse a triangulation of genus g and compute a so-called g-Schnyder wood on the way. As an application, we give a procedure to encode a triangulation of genus g and n vertices in 4n+O(glog (n)) bits. This matches the worst-case encoding rate of Edgebreaker in positive genus. All the algorithms presented here have execution time O((n+g)g) and hence are linear when the genus is fixed.

[1]  Nicolas Bonichon,et al.  Intervals in Catalan lattices and realizers of triangulations , 2009, J. Comb. Theory, Ser. A.

[2]  Brett Stevens,et al.  Class-Uniformly Resolvable Group Divisible Structures II: Frames , 2004, Electron. J. Comb..

[3]  Stefan Felsner,et al.  Lattice Structures from Planar Graphs , 2004, Electron. J. Comb..

[4]  Xin He,et al.  Linear-Time Succinct Encodings of Planar Graphs via Canonical Orderings , 1999, SIAM J. Discret. Math..

[5]  Nicolas Bonichon,et al.  An Information-Theoretic Upper Bound of Planar Graphs Using Triangulation , 2003, STACS.

[6]  Yi-Ting Chiang,et al.  Orderly spanning trees with applications to graph encoding and graph drawing , 2001, SODA '01.

[7]  Zhicheng Gao,et al.  A Pattern for the Asymptotic Number of Rooted Maps on Surfaces , 1993, J. Comb. Theory, Ser. A.

[8]  Olivier Devillers,et al.  Succinct representations of planar maps , 2008, Theor. Comput. Sci..

[9]  Jeffery R. Westbrook,et al.  Short Encodings of Planar Graphs and Maps , 1995, Discret. Appl. Math..

[10]  W. Schnyder Planar graphs and poset dimension , 1989 .

[11]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[12]  Robert E. Tarjan,et al.  A Note on Finding the Bridges of a Graph , 1974, Inf. Process. Lett..

[13]  Éric Fusy Combinatoire des cartes planaires et applications algorithmiques , 2007 .

[14]  Jérémy Barbay,et al.  Succinct Representation of Labeled Graphs , 2007, Algorithmica.

[15]  Nicolas Bonichon,et al.  Planar Graphs, via Well-Orderly Maps and Trees , 2004, WG.

[16]  Jarek Rossignac,et al.  Efficient Edgebreaker for surfaces of arbitrary topology , 2004, Proceedings. 17th Brazilian Symposium on Computer Graphics and Image Processing.

[17]  Nicolas Bonichon Aspects algorithmiques et combinatoires des réaliseurs des graphes plans maximaux. (Algorithmic and combinatorial aspects of maximal plane graphs realizers) , 2002 .

[18]  György Turán,et al.  On the succinct representation of graphs , 1984, Discret. Appl. Math..

[19]  Stefan Felsner,et al.  Convex Drawings of Planar Graphs and the Order Dimension of 3-Polytopes , 2001, Order.

[20]  Thomas Lewiner,et al.  Optimal discrete Morse functions for 2-manifolds , 2003, Comput. Geom..

[21]  Dominique Poulalhon,et al.  Optimal Coding and Sampling of Triangulations , 2003, Algorithmica.

[22]  Swastik Kopparty,et al.  TO PLANAR GRAPHS , 2010 .

[23]  Éric Fusy,et al.  Dissections and trees, with applications to optimal mesh encoding and to random sampling , 2005, SODA '05.

[24]  Nicolas Bonichon,et al.  Catalan's intervals and realizers of triangulations , 2007, 0704.3731.

[25]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[26]  Jarek Rossignac,et al.  Edgebreaker: a simple implementation for surfaces with handles , 2003, Comput. Graph..

[27]  H. de Fraysseix,et al.  On topological aspects of orientations , 2001, Discret. Math..

[28]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2005, Discret. Comput. Geom..

[29]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[30]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[31]  Éric Fusy,et al.  Dissections, orientations, and trees with applications to optimal mesh encoding and random sampling , 2008, TALG.

[32]  Gilles Schaeffer,et al.  A Bijection for Rooted Maps on Orientable Surfaces , 2007, SIAM J. Discret. Math..

[33]  Goos Kant,et al.  Drawing planar graphs using the canonical ordering , 1996, Algorithmica.

[34]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[35]  Martin Kutz,et al.  Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time , 2005, SCG '06.

[36]  Chee-Keng Yap,et al.  Computational complexity of combinatorial surfaces , 1990, SCG '90.

[37]  Guillaume Chapuy,et al.  Asymptotic Enumeration of Constellations and Related Families of Maps on Orientable Surfaces , 2008, Combinatorics, Probability and Computing.

[38]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[39]  Nicolas Bonichon,et al.  Edge Partition of Toroidal Graphs into Forests in Linear Time , 2005, Electron. Notes Discret. Math..

[40]  Olivier Devillers,et al.  Optimal succinct representations of planar maps , 2006, SCG '06.

[41]  Bojan Mohar,et al.  Finding Shortest Non-Separating and Non-Contractible Cycles for Topologically Embedded Graphs , 2007, Discret. Comput. Geom..

[42]  Xin He,et al.  Compact Encodings of Planar Graphs via Canonical Orderings and Multiple Parentheses , 1998, ICALP.

[43]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[44]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[45]  Olivier Devillers,et al.  Succinct Representation of Triangulations with a Boundary , 2005, WADS.

[46]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[47]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..