Evidence for functional, inhibitory, histamine H3 receptors in rat carotid body Type I cells

[1]  M. Shirahata,et al.  The impact of adenosine and an A2A adenosine receptor agonist on the ACh-induced increase in intracellular calcium of the glomus cells of the cat carotid body , 2009, Brain Research.

[2]  C. Wyatt,et al.  Presynaptic regulation of isolated neonatal rat carotid body type I cells by histamine , 2009, Respiratory Physiology & Neurobiology.

[3]  E. Moya,et al.  Modulatory effects of histamine on cat carotid body chemoreception , 2008, Respiratory Physiology & Neurobiology.

[4]  G. Abbott,et al.  Cardioprotective Effect of Histamine H3-Receptor Activation: Pivotal Role of Gβγ-Dependent Inhibition of Voltage-Operated Ca2+ Channels , 2008, Journal of Pharmacology and Experimental Therapeutics.

[5]  M. Inoue,et al.  Inhibition of TASK1‐like channels by muscarinic receptor stimulation in rat adrenal medullary cells , 2008, Journal of neurochemistry.

[6]  M. Shirahata,et al.  Role of acetylcholine in neurotransmission of the carotid body , 2007, Respiratory Physiology & Neurobiology.

[7]  F. W. Tse,et al.  Pituitary adenylate cyclase‐activating polypeptide (PACAP) stimulates the oxygen sensing type I (glomus) cells of rat carotid bodies via reduction of a background TASK‐like K+ current , 2007, Journal of neurochemistry.

[8]  E. El-Fakahany,et al.  Muscarinic M2 Receptors Directly Activate Gq/11 and Gs G-Proteins , 2007, Journal of Pharmacology and Experimental Therapeutics.

[9]  M. Rozložník,et al.  Expression of histamine receptors and effect of histamine in the rat carotid body chemoafferent pathway , 2006, The European journal of neuroscience.

[10]  J. Carroll,et al.  Dopamine D2 receptor modulation of carotid body type 1 cell intracellular calcium in developing rats. , 2005, American journal of physiology. Lung cellular and molecular physiology.

[11]  R. Iturriaga,et al.  Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals , 2004, Brain Research Reviews.

[12]  C. Prinz,et al.  Evidence for histamine as a transmitter in rat carotid body sensor cells , 2004, Journal of neurochemistry.

[13]  K. M. Spyer,et al.  Pivotal Role of Nucleotide P2X2 Receptor Subunit of the ATP-Gated Ion Channel Mediating Ventilatory Responses to Hypoxia , 2003, The Journal of Neuroscience.

[14]  G. Czirják,et al.  Inhibition of TASK-1 potassium channel by phospholipase C. , 2001, American journal of physiology. Cell physiology.

[15]  E. Honoré,et al.  An oxygen‐, acid‐ and anaesthetic‐sensitive TASK‐like background potassium channel in rat arterial chemoreceptor cells , 2000, The Journal of physiology.

[16]  Min Zhang,et al.  Co‐release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors , 2000, The Journal of physiology.

[17]  R. Vaughan-Jones,et al.  Muscarinic and nicotinic receptors raise intracellular Ca2+ levels in rat carotid body type I cells. , 1997, The Journal of physiology.

[18]  R. Vaughan-Jones,et al.  Effects of hypercapnia on membrane potential and intracellular calcium in rat carotid body type I cells. , 1994, The Journal of physiology.

[19]  R. Vaughan-Jones,et al.  Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. , 1994, The Journal of physiology.

[20]  C. Wyatt,et al.  Nicotinic acetylcholine receptors in isolated type I cells of the neonatal rat carotid body , 1993, Neuroscience.

[21]  J. C. Finley,et al.  The central organization of carotid body afferent projections to the brainstem of the rat , 1992, Brain Research.

[22]  J. Schwartz,et al.  Autoregulation of histamine release in brain by presynaptic H3-receptors , 1985, Neuroscience.

[23]  J. Schwartz,et al.  Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor , 1983, Nature.

[24]  C. Eyzaguirre,et al.  Presence of acetylcholine and transmitter release from carotid body chemoreceptors. , 1965, The Journal of physiology.