Robust and MaxMin Optimization under Matroid and Knapsack Uncertainty Sets

Consider the following problem: given a set system (<i>U</i>, Ω) and an edge-weighted graph <i>G</i> = (<i>U</i>, <i>E</i>) on the same universe <i>U</i>, find the set <i>A</i> ∈ Ω such that the Steiner tree cost with terminals <i>A</i> is as large as possible—“which set in Ω is the most difficult to connect up?” This is an example of a <i>max-min problem</i>: find the set <i>A</i> ∈ Ω such that the value of some minimization (covering) problem is as large as possible. In this article, we show that for certain covering problems that admit good deterministic online algorithms, we can give good algorithms for max-min optimization when the set system Ω is given by a <i>p</i>-system or knapsack constraints or both. This result is similar to results for constrained maximization of submodular functions. Although many natural covering problems are not even approximately submodular, we show that one can use properties of the online algorithm as a surrogate for submodularity. Moreover, we give stronger connections between max-min optimization and two-stage robust optimization, and hence give improved algorithms for robust versions of various covering problems, for cases where the uncertainty sets are given by <i>p</i>-systems and knapsack constraints.

[1]  R. Ravi,et al.  Pay Today for a Rainy Day: Improved Approximation Algorithms for Demand-Robust Min-Cut and Shortest Path Problems , 2006, STACS.

[2]  Jan Vondrák,et al.  Submodular Maximization over Multiple Matroids via Generalized Exchange Properties , 2009, Math. Oper. Res..

[3]  Vahab S. Mirrokni,et al.  Robust Combinatorial Optimization with Exponential Scenarios , 2007, IPCO.

[4]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[5]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[6]  Vahab S. Mirrokni,et al.  Two-stage Robust Network Design with Exponential Scenarios , 2011, Algorithmica.

[7]  R. Ravi,et al.  Thresholded covering algorithms for robust and max–min optimization , 2009, Mathematical Programming.

[8]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[9]  Vahab S. Mirrokni,et al.  Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints , 2009, SIAM J. Discret. Math..

[10]  Alexander Schrijver,et al.  On the Size of Systems of Sets Every t of Which Have an SDR, with an Application to the Worst-Case Ratio of Heuristics for Packing Problems , 1989, SIAM J. Discret. Math..

[11]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[12]  Sanjeev Khanna,et al.  On multi-dimensional packing problems , 2004, SODA '99.

[13]  Mihalis Yannakakis,et al.  Approximate Max-Flow Min-(Multi)Cut Theorems and Their Applications , 1996, SIAM J. Comput..

[14]  Hadas Shachnai,et al.  Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints , 2013, Math. Oper. Res..

[15]  R. Ravi,et al.  Thresholded Covering Algorithms for Robust and Max-min Optimization , 2010, ICALP.

[16]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[17]  Aaron Roth,et al.  Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms , 2010, WINE.

[18]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[19]  Piotr Berman,et al.  On-line algorithms for Steiner tree problems (extended abstract) , 1997, STOC '97.

[20]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[21]  R. Ravi,et al.  When Trees Collide: An Approximation Algorithm for the Generalized Steiner Problem on Networks , 1995, SIAM J. Comput..

[22]  Chaitanya Swamy,et al.  Stochastic optimization is (almost) as easy as deterministic optimization , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[23]  Hadas Shachnai,et al.  Maximizing submodular set functions subject to multiple linear constraints , 2009, SODA.

[24]  Aravind Srinivasan,et al.  Improved Approximation Guarantees for Packing and Covering Integer Programs , 1999, SIAM J. Comput..

[25]  Amin Saberi,et al.  Correlation robust stochastic optimization , 2009, SODA '10.

[26]  R. Ravi,et al.  Hedging Uncertainty: Approximation Algorithms for Stochastic Optimization Problems , 2004, Math. Program..

[27]  R. Ravi,et al.  When trees collide: an approximation algorithm for the generalized Steiner problem on networks , 1991, STOC '91.

[28]  W. Marsden I and J , 2012 .

[29]  Piotr Berman,et al.  A d/2 Approximation for Maximum Weight Independent Set in d-Claw Free Graphs , 2000, Nord. J. Comput..

[30]  Sanjeev Khanna,et al.  On Multidimensional Packing Problems , 2004, SIAM J. Comput..

[31]  A. Frieze,et al.  Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .

[32]  Tim Roughgarden,et al.  Algorithmic Game Theory , 2007 .

[33]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[34]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[35]  Noga Alon,et al.  The online set cover problem , 2003, STOC '03.

[36]  Satish Rao,et al.  A polynomial-time tree decomposition to minimize congestion , 2003, SPAA '03.

[37]  Mohit Singh,et al.  How to pay, come what may: approximation algorithms for demand-robust covering problems , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[38]  Noga Alon,et al.  A general approach to online network optimization problems , 2004, SODA '04.

[39]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[40]  Sanjeev Khanna,et al.  A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem , 2005, SIAM J. Comput..

[41]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[42]  Nicole Immorlica,et al.  On the costs and benefits of procrastination: approximation algorithms for stochastic combinatorial optimization problems , 2004, SODA '04.

[43]  Makoto Imase,et al.  Dynamic Steiner Tree Problem , 1991, SIAM J. Discret. Math..

[44]  Nicole Immorlica,et al.  Limitations of cross-monotonic cost sharing schemes , 2005, SODA '05.

[45]  Jan Vondrák,et al.  Is Submodularity Testable? , 2010, Algorithmica.

[46]  J. Håstad Clique is hard to approximate within n 1-C , 1996 .