Dynamic fatigue studies of ZnO nanowires by in‐situ transmission electron microscopy

[1]  William N. Sharpe,et al.  Microscale Characterization of Mechanical Properties , 2007 .

[2]  A. Kulkarni,et al.  Characterization of novel pseudoelastic behaviour of zinc oxide nanowires , 2007 .

[3]  Zhong Lin Wang,et al.  Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM , 2000 .

[4]  Zhong Lin Wang,et al.  Flexible piezotronic strain sensor. , 2008, Nano letters.

[5]  Alberto Corigliano,et al.  A new on-chip test structure for real time fatigue analysis in polysilicon MEMS , 2009, Microelectron. Reliab..

[6]  Zhong Lin Wang,et al.  Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy , 2004 .

[7]  Chang-Min Suh,et al.  Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology , 2007 .

[8]  P. Chu,et al.  Activation volume and incipient plastic deformation of uniaxially-loaded gold nanowires at very high strain rates , 2007 .

[9]  D. Zahn Minimum energy pathways of brittle and ductile deformation/fracture processes. , 2008, The Journal of chemical physics.

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  B. Bhushan,et al.  Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques , 2003 .

[12]  Ole Hansen,et al.  MEMS device for bending test: measurements of fatigue and creep of electroplated nickel☆ , 2003 .

[13]  Xiaodong Li,et al.  Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques , 2006, Nanotechnology.

[14]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[15]  Zhong Lin Wang,et al.  Structures of planar defects in ZnO nanobelts and nanowires. , 2009, Micron.

[16]  Guang Zhu,et al.  Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. , 2009, Nano letters.