A review of goodness of fit tests for Pareto distributions
暂无分享,去创建一个
J. Chu | O. Dickin | S. Nadarajah | S. Nadarajah | J. Chu | O. Dickin | Jeffrey Chu
[1] J. Heo,et al. Derivation of the Probability Plot Correlation Coefficient Test Statistics for the Generalized Logistic and the Generalized Pareto Distributions , 2008 .
[2] Deyuan Li,et al. Estimation for the Generalized Pareto Distribution Using Maximum Likelihood and Goodness of Fit , 2011 .
[3] Vartan Choulakian,et al. Goodness-of-Fit Tests for the Generalized Pareto Distribution , 2001, Technometrics.
[4] Maria L. Rizzo,et al. New Goodness-of-Fit Tests for Pareto Distributions , 2009 .
[5] S. Shapiro,et al. Goodness-of-Fit Tests for Pareto Distribution , 2008 .
[6] Barry C. Arnold,et al. A goodness of fit test for the Pareto distribution in the presence of Type II censoring, based on the cumulative hazard function , 2010, Comput. Stat. Data Anal..
[7] F. Goerlich. A simple and efficient test for the Pareto law , 2013 .
[8] T. W. Anderson,et al. Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .
[9] A. Baklizi. Preliminary Test Estimation in the Pareto Distribution Using Minimax Regret Significance Levels , 2008 .
[10] Simos G. Meintanis,et al. Data-Transformation and Test of Fit for the Generalized Pareto Hypothesis , 2007 .
[11] Andreas Kleefeld,et al. Robust and Efficient Fitting of the Generalized Pareto Distribution with Actuarial Applications in View , 2009 .
[12] Wo-Chiang Lee. Fitting the generalized Pareto distribution to commercial fire loss severity: evidence from Taiwan , 2012 .
[13] AN Kolmogorov-Smirnov,et al. Sulla determinazione empírica di uma legge di distribuzione , 1933 .
[14] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[15] Helly. Wahrscheinlichkeit, Statistik und Wahrheit , 1936 .
[16] J. R. Wallis,et al. Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form , 1979 .
[17] O. A. Y. Jackson. An Analysis of Departures from the Exponential Distribution , 1967 .
[18] R. Serfling,et al. Robust and Efficient Estimation of the Tail Index of a Single-Parameter Pareto Distribution , 2000 .
[19] Moshe Levy,et al. The Forbes 400 and the Pareto wealth distribution , 2006 .
[20] WEIGHTED QUANTILE CORRELATION TESTS FOR GUMBEL, WEIBULL , 2009 .
[21] Ksenia Volkova. Goodness-of-fit tests for the Pareto distribution based on its characterization , 2016, Stat. Methods Appl..
[22] Mikhail Nikulin,et al. Statistical Models and Methods for Biomedical and Technical Systems , 2008 .
[23] M. Ivette Gomes,et al. A new class of semi-parametric estimators of the second order parameter. , 2003 .
[24] H. Büning,et al. KOLMOGOROV-SMIRNOV- AND CRAMÈR-VON MISES TYPE TWO-SAMPLE TESTS WITH VARIOUS WEIGHT FUNCTIONS , 2001 .
[25] Spyros Skouras,et al. US city size distribution: Robustly Pareto, but only in the tail , 2013 .
[26] Narayanaswamy Balakrishnan,et al. Goodness-of-Fit Test Based on Kullback-Leibler Information for Progressively Type-II Censored Data , 2011, IEEE Transactions on Reliability.
[27] Michael Falk,et al. A LAN based Neyman smooth test for Pareto distributions , 2008 .
[28] M. F. Brilhante. EXPONENTIALITY VERSUS GENERALIZED PARETO — A RESISTANT AND ROBUST TEST , 2004 .
[29] Elizabeth González-Estrada,et al. A bootstrap goodness of fit test for the generalized Pareto distribution , 2009, Comput. Stat. Data Anal..
[30] Liang Peng,et al. Semi-parametric Estimation of the Second Order Parameter in Statistics of Extremes , 2002 .
[31] D. Evans,et al. The Distribution of the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling Test Statistics for Exponential Populations with Estimated Parameters , 2008 .
[32] Emmanuelle Crétois,et al. NEYMAN SMOOTH TESTS FOR THE GENERALIZED PARETO DISTRIBUTION , 2002 .
[33] Goodness-of-fit tests for Pareto distribution based on a characterization and their asymptotics , 2013, 1310.5510.
[34] Alberto Luceño,et al. Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators , 2006, Comput. Stat. Data Anal..
[35] A. W. Kimball,et al. ESTIMATION OF MORTALITY INTENSITIES IN ANIMAL EXPERIMENTS , 1960 .
[36] P. Lewis,et al. Some results on tests for Poisson processes , 1965 .
[37] N. Smirnov. Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .
[38] Faustino Prieto,et al. Modelling road accident blackspots data with the discrete generalized Pareto distribution. , 2013, Accident; analysis and prevention.
[39] J. Hrabáková,et al. The Consistency and Robustness of Modified Cramér–Von Mises and Kolmogorov–Cramér Estimators , 2013 .
[40] Zeinab H. Amin. Tests for the Validity of the Assumption that the Underlying Distribution of Life is Pareto , 2007 .
[41] S. K. Bhattacharya,et al. Bayesian estimation for the Pareto income distribution , 1999 .
[42] P. Marlin. Goodness-of-fit tests for the pareto and lognormal distributions based on multiply truncated samples , 1984 .
[43] R. D'Agostino,et al. Goodness-of-Fit-Techniques , 1987 .
[44] D. Darling,et al. A Test of Goodness of Fit , 1954 .
[45] A. Martin-Löf. On the composition of elementary errors , 1994 .
[46] J. Beirlant,et al. A goodness-of-fit statistic for Pareto-type behaviour , 2006 .
[47] .. M.Arshad,et al. Anderson Darling and Modified Anderson Darling Tests for Generalized Pareto Distribution , 2003 .
[48] Kolmogorov Smirnov Test for Generalized Pareto Distribution , 2002 .
[49] Bernard Walter Silverman. Convergence of a Class of Empirical Distribution Functions of Dependent Random Variables , 1983 .
[50] Jan Beirlant,et al. LINKING PARETO-TAIL KERNEL GOODNESS-OF-FIT STATISTICS WITH TAIL INDEX AT OPTIMAL THRESHOLD AND SECOND ORDER ESTIMATION , 2008 .
[51] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[52] S. Grimshaw. Computing Maximum Likelihood Estimates for the Generalized Pareto Distribution , 1993 .
[53] Jin Zhang,et al. A New and Efficient Estimation Method for the Generalized Pareto Distribution , 2009, Technometrics.
[54] H. Büning,et al. Robustness and power of modified Lepage, Kolmogorov-Smirnov and Crame´r-von Mises two-sample tests , 2002 .
[55] A. H. Moore,et al. Modified KS, AD, and C-vM tests for the Pareto distribution with unknown location and scale parameters , 1992 .
[56] Jean-Noël Bacro,et al. A statistical test procedure for the shape parameter of a generalized Pareto distribution , 2004, Comput. Stat. Data Anal..
[57] Vytaras Brazauskas,et al. Robust Estimation of Tail Parameters for Two-Parameter Pareto and Exponential Models via Generalized Quantile Statistics , 2000 .
[58] Vytaras Brazauskas,et al. Favorable Estimators for Fitting Pareto Models: A Study Using Goodness-of-fit Measures with Actual Data , 2003, ASTIN Bulletin.
[59] Jan Beirlant,et al. Tail Index Estimation and an Exponential Regression Model , 1999 .
[60] Istituto italiano degli attuari. Giornale dell'Istituto italiano degli attuari , 1930 .