A review of goodness of fit tests for Pareto distributions

Abstract Pareto distributions are the most popular models in economics and finance. Hence, it is essential to have a wide spectrum of tools for checking their goodness of fit to a given data set. This paper provides the first review of known goodness of fit tests for Pareto distributions. Over twenty tests are reviewed. Their powers are compared by simulation.

[1]  J. Heo,et al.  Derivation of the Probability Plot Correlation Coefficient Test Statistics for the Generalized Logistic and the Generalized Pareto Distributions , 2008 .

[2]  Deyuan Li,et al.  Estimation for the Generalized Pareto Distribution Using Maximum Likelihood and Goodness of Fit , 2011 .

[3]  Vartan Choulakian,et al.  Goodness-of-Fit Tests for the Generalized Pareto Distribution , 2001, Technometrics.

[4]  Maria L. Rizzo,et al.  New Goodness-of-Fit Tests for Pareto Distributions , 2009 .

[5]  S. Shapiro,et al.  Goodness-of-Fit Tests for Pareto Distribution , 2008 .

[6]  Barry C. Arnold,et al.  A goodness of fit test for the Pareto distribution in the presence of Type II censoring, based on the cumulative hazard function , 2010, Comput. Stat. Data Anal..

[7]  F. Goerlich A simple and efficient test for the Pareto law , 2013 .

[8]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[9]  A. Baklizi Preliminary Test Estimation in the Pareto Distribution Using Minimax Regret Significance Levels , 2008 .

[10]  Simos G. Meintanis,et al.  Data-Transformation and Test of Fit for the Generalized Pareto Hypothesis , 2007 .

[11]  Andreas Kleefeld,et al.  Robust and Efficient Fitting of the Generalized Pareto Distribution with Actuarial Applications in View , 2009 .

[12]  Wo-Chiang Lee Fitting the generalized Pareto distribution to commercial fire loss severity: evidence from Taiwan , 2012 .

[13]  AN Kolmogorov-Smirnov,et al.  Sulla determinazione empírica di uma legge di distribuzione , 1933 .

[14]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[15]  Helly Wahrscheinlichkeit, Statistik und Wahrheit , 1936 .

[16]  J. R. Wallis,et al.  Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form , 1979 .

[17]  O. A. Y. Jackson An Analysis of Departures from the Exponential Distribution , 1967 .

[18]  R. Serfling,et al.  Robust and Efficient Estimation of the Tail Index of a Single-Parameter Pareto Distribution , 2000 .

[19]  Moshe Levy,et al.  The Forbes 400 and the Pareto wealth distribution , 2006 .

[20]  WEIGHTED QUANTILE CORRELATION TESTS FOR GUMBEL, WEIBULL , 2009 .

[21]  Ksenia Volkova Goodness-of-fit tests for the Pareto distribution based on its characterization , 2016, Stat. Methods Appl..

[22]  Mikhail Nikulin,et al.  Statistical Models and Methods for Biomedical and Technical Systems , 2008 .

[23]  M. Ivette Gomes,et al.  A new class of semi-parametric estimators of the second order parameter. , 2003 .

[24]  H. Büning,et al.  KOLMOGOROV-SMIRNOV- AND CRAMÈR-VON MISES TYPE TWO-SAMPLE TESTS WITH VARIOUS WEIGHT FUNCTIONS , 2001 .

[25]  Spyros Skouras,et al.  US city size distribution: Robustly Pareto, but only in the tail , 2013 .

[26]  Narayanaswamy Balakrishnan,et al.  Goodness-of-Fit Test Based on Kullback-Leibler Information for Progressively Type-II Censored Data , 2011, IEEE Transactions on Reliability.

[27]  Michael Falk,et al.  A LAN based Neyman smooth test for Pareto distributions , 2008 .

[28]  M. F. Brilhante EXPONENTIALITY VERSUS GENERALIZED PARETO — A RESISTANT AND ROBUST TEST , 2004 .

[29]  Elizabeth González-Estrada,et al.  A bootstrap goodness of fit test for the generalized Pareto distribution , 2009, Comput. Stat. Data Anal..

[30]  Liang Peng,et al.  Semi-parametric Estimation of the Second Order Parameter in Statistics of Extremes , 2002 .

[31]  D. Evans,et al.  The Distribution of the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling Test Statistics for Exponential Populations with Estimated Parameters , 2008 .

[32]  Emmanuelle Crétois,et al.  NEYMAN SMOOTH TESTS FOR THE GENERALIZED PARETO DISTRIBUTION , 2002 .

[33]  Goodness-of-fit tests for Pareto distribution based on a characterization and their asymptotics , 2013, 1310.5510.

[34]  Alberto Luceño,et al.  Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators , 2006, Comput. Stat. Data Anal..

[35]  A. W. Kimball,et al.  ESTIMATION OF MORTALITY INTENSITIES IN ANIMAL EXPERIMENTS , 1960 .

[36]  P. Lewis,et al.  Some results on tests for Poisson processes , 1965 .

[37]  N. Smirnov Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .

[38]  Faustino Prieto,et al.  Modelling road accident blackspots data with the discrete generalized Pareto distribution. , 2013, Accident; analysis and prevention.

[39]  J. Hrabáková,et al.  The Consistency and Robustness of Modified Cramér–Von Mises and Kolmogorov–Cramér Estimators , 2013 .

[40]  Zeinab H. Amin Tests for the Validity of the Assumption that the Underlying Distribution of Life is Pareto , 2007 .

[41]  S. K. Bhattacharya,et al.  Bayesian estimation for the Pareto income distribution , 1999 .

[42]  P. Marlin Goodness-of-fit tests for the pareto and lognormal distributions based on multiply truncated samples , 1984 .

[43]  R. D'Agostino,et al.  Goodness-of-Fit-Techniques , 1987 .

[44]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[45]  A. Martin-Löf On the composition of elementary errors , 1994 .

[46]  J. Beirlant,et al.  A goodness-of-fit statistic for Pareto-type behaviour , 2006 .

[47]  .. M.Arshad,et al.  Anderson Darling and Modified Anderson Darling Tests for Generalized Pareto Distribution , 2003 .

[48]  Kolmogorov Smirnov Test for Generalized Pareto Distribution , 2002 .

[49]  Bernard Walter Silverman Convergence of a Class of Empirical Distribution Functions of Dependent Random Variables , 1983 .

[50]  Jan Beirlant,et al.  LINKING PARETO-TAIL KERNEL GOODNESS-OF-FIT STATISTICS WITH TAIL INDEX AT OPTIMAL THRESHOLD AND SECOND ORDER ESTIMATION , 2008 .

[51]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[52]  S. Grimshaw Computing Maximum Likelihood Estimates for the Generalized Pareto Distribution , 1993 .

[53]  Jin Zhang,et al.  A New and Efficient Estimation Method for the Generalized Pareto Distribution , 2009, Technometrics.

[54]  H. Büning,et al.  Robustness and power of modified Lepage, Kolmogorov-Smirnov and Crame´r-von Mises two-sample tests , 2002 .

[55]  A. H. Moore,et al.  Modified KS, AD, and C-vM tests for the Pareto distribution with unknown location and scale parameters , 1992 .

[56]  Jean-Noël Bacro,et al.  A statistical test procedure for the shape parameter of a generalized Pareto distribution , 2004, Comput. Stat. Data Anal..

[57]  Vytaras Brazauskas,et al.  Robust Estimation of Tail Parameters for Two-Parameter Pareto and Exponential Models via Generalized Quantile Statistics , 2000 .

[58]  Vytaras Brazauskas,et al.  Favorable Estimators for Fitting Pareto Models: A Study Using Goodness-of-fit Measures with Actual Data , 2003, ASTIN Bulletin.

[59]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[60]  Istituto italiano degli attuari Giornale dell'Istituto italiano degli attuari , 1930 .