Real-time adaptive optics with pyramid wavefront sensors: part II. Accurate wavefront reconstruction using iterative methods

In this paper, we address the inverse problem of fast, stable, and high-quality wavefront reconstruction from pyramid wavefront sensor data for Adaptive Optics systems on Extremely Large Telescopes. For solving the indicated problem we apply well-known iterative mathematical algorithms, namely conjugate gradient, steepest descent, Landweber, Landweber-Kaczmarz and steepest descent-Kaczmarz iteration based on theoretical studies of the pyramid wavefront sensor. We compare the performance (in terms of correction quality and speed) of these algorithms in end-to-end numerical simulations of a closed adaptive loop. The comparison is performed in the context of a high-order SCAO system for METIS, one of the first-light instruments currently under design for the Extremely Large Telescope. We show that, though being iterative, the analyzed algorithms, when applied in the studied context, can be implemented in a very efficient manner, which reduces the related computational effort significantly. We demonstrate that the suggested analytically developed approaches involving iterative algorithms provide comparable quality to standard matrix-vector-multiplication methods while being computationally cheaper.

[1]  M. Hanke Conjugate gradient type methods for ill-posed problems , 1995 .

[2]  Glen Herriot,et al.  Testing the pyramid truth wavefront sensor for NFIRAOS in the lab , 2016, Astronomical Telescopes + Instrumentation.

[3]  Ronny Ramlau,et al.  Nonlinear wavefront reconstruction methods for pyramid sensors using Landweber and Landweber-Kaczmarz iterations. , 2018, Applied optics.

[4]  R. Ragazzoni Pupil plane wavefront sensing with an oscillating prism , 1996 .

[5]  Richard Clare,et al.  Numerical simulations of an Extreme AO system for an ELT , 2012 .

[6]  T. Fusco,et al.  The adaptive optics modes for HARMONI: from Classical to Laser Assisted Tomographic AO , 2016, Astronomical Telescopes + Instrumentation.

[7]  Sylvain Oberti,et al.  Adaptive optics simulations for the European Extremely Large Telescope , 2006, Astronomical Telescopes + Instrumentation.

[8]  S. Esposito,et al.  Pyramid sensor for segmented mirror alignment. , 2005, Optics letters.

[9]  Norbert Hubin,et al.  Adaptive optics simulations for the European Extremely Large Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[10]  Michael Shao,et al.  Extreme adaptive optics for the Thirty Meter Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[11]  Yuhong Dai Alternate step gradient method , 2003 .

[12]  Ngai-Fong Law,et al.  Wavefront estimation at low light levels , 1996 .

[13]  Cristina Alvarez Diez A 3-sided Pyramid Wavefront Sensor Controlled by a Neural Network for Adaptive Optics to reach diffraction-limited Imaging of the Retina , 2006 .

[14]  Serge Meimon,et al.  Adaptive optics systems for HARMONI: a visible and near-infrared integral field spectrograph for the E-ELT , 2010, Astronomical Telescopes + Instrumentation.

[15]  A. Louis Inverse und schlecht gestellte Probleme , 1989 .

[16]  Ronny Ramlau,et al.  Wavefront reconstruction for ELT-sized telescopes with pyramid wavefront sensors , 2018, Astronomical Telescopes + Instrumentation.

[17]  L. Busoni,et al.  Large Binocular Telescope Adaptive Optics System: new achievements and perspectives in adaptive optics , 2011, Optical Engineering + Applications.

[18]  L. Carbonaro,et al.  Wavefront sensor design for the GMT natural guide star AO system , 2012, Other Conferences.

[19]  Otmar Scherzer,et al.  On Steepest-Descent-Kaczmarz methods for regularizing systems of nonlinear ill-posed equations , 2008, Appl. Math. Comput..

[20]  Remko Stuik,et al.  METIS: the mid-infrared E-ELT imager and spectrograph , 2014, Astronomical Telescopes and Instrumentation.

[21]  Fernando Vargas-Martin,et al.  Quantitative phase microscopy of transparent samples using a liquid crystal display , 2013, Journal of biomedical optics.

[22]  Armando Riccardi,et al.  Joint MICADO-MAORY SCAO mode: specifications, prototyping, simulations and preliminary design , 2016, Astronomical Telescopes + Instrumentation.

[23]  Armando Riccardi,et al.  Laboratory characterization and performance of the high-order adaptive optics system for the Large Binocular Telescope , 2010 .

[24]  Matthias Rosensteiner,et al.  Cumulative Reconstructor: fast wavefront reconstruction algorithm for Extremely Large Telescopes. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Frank Wübbeling,et al.  Inverse und schlecht gestellte Probleme , 2011 .

[26]  Andreas Obereder,et al.  Dealing with spiders on ELTs: using a Pyramid WFS to overcome residual piston effects , 2018, Astronomical Telescopes + Instrumentation.

[27]  Jean-Franccois Sauvage,et al.  Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders , 2017 .

[28]  Enrico Fedrigo,et al.  Parallel simulation tools for AO on ELTs , 2004, SPIE Astronomical Telescopes + Instrumentation.

[29]  Bin Zhou,et al.  Gradient Methods with Adaptive Step-Sizes , 2006, Comput. Optim. Appl..

[30]  Elizabeth Daly,et al.  Ophthalmic wavefront measurements using a versatile pyramid sensor , 2010 .

[31]  Ronny Ramlau,et al.  Advanced wavefront reconstruction methods for segmented Extremely Large Telescope pupils using pyramid sensors , 2018 .

[32]  Byron Engler,et al.  Effects of the telescope spider on extreme adaptive optics systems with pyramid wavefront sensors , 2018, Astronomical Telescopes + Instrumentation.

[33]  Olivier Absil,et al.  Single conjugate adaptive optics for the ELT instrument METIS , 2018 .

[34]  Kevin Baker,et al.  Two-sided pyramid wavefront sensor in the direct phase mode , 2006, SPIE Astronomical Telescopes + Instrumentation.

[35]  H. Brakhage ON ILL-POSED PROBLEMS AND THE METHOD OF CONJUGATE GRADIENTS , 1987 .

[36]  Otmar Scherzer,et al.  Convergence Analysis Of A Landweber—Kaczmarz Method For Solving Nonlinear Ill-Posed Problems , 2002 .

[37]  I. Iglesias Pyramid phase microscopy. , 2011, Optics letters.

[38]  Kjetil Dohlen,et al.  Analysis and mitigation of pupil discontinuities on adaptive optics performance , 2018, Astronomical Telescopes + Instrumentation.

[39]  Ronny Ramlau,et al.  Two novel algorithms for wavefront reconstruction from pyramid sensor data: Convolution with Linearized Inverse Filter and Pyramid Fourier Transform Reconstructor , 2017 .

[40]  Christopher Dainty,et al.  Linearity of the pyramid wavefront sensor. , 2006, Optics express.

[41]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[42]  M. Z. Nashed,et al.  On the Convergence of the Conjugate Gradient Method for Singular Linear Operator Equations , 1972 .

[43]  Ronny Ramlau,et al.  Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor. , 2013, Applied optics.

[44]  Roberto Ragazzoni,et al.  Extended source pyramid wave-front sensor for the human eye. , 2002, Optics express.

[45]  Ronny Ramlau,et al.  Convolution- and Fourier-transform-based reconstructors for pyramid wavefront sensor. , 2017, Applied optics.

[46]  Francois Rigaut,et al.  Simulating Astronomical Adaptive Optics Systems Using Yao , 2013 .

[47]  Marcos A. van Dam,et al.  Design of a truth sensor for the GMT laser tomography adaptive optics system , 2012, Other Conferences.

[48]  Fabrice Vidal,et al.  Tests of novel wavefront reconstructors on sky with CANARY , 2013 .

[49]  Christophe Verinaud,et al.  On the nature of the measurements provided by a pyramid wave-front sensor , 2004 .

[50]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[51]  Ya-Xiang Yuan,et al.  Alternate minimization gradient method , 2003 .

[52]  Christophe Verinaud,et al.  Extreme adaptive optics simulations for EPICS , 2010 .

[53]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[54]  Ronny Ramlau,et al.  Wavefront reconstruction from non-modulated pyramid wavefront sensor data using a singular value type expansion , 2018 .

[55]  Brent L Ellerbroek,et al.  Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[56]  M. Raydan On the Barzilai and Borwein choice of steplength for the gradient method , 1993 .

[57]  Marc S. Sarazin,et al.  Latest AO simulation results for the E-ELT , 2017 .

[58]  S Esposito,et al.  Signal spatial filtering for co-phasing in seeing-limited conditions. , 2007, Optics letters.

[59]  E. Vernet,et al.  A pyramid wavefront sensor with no dynamic modulation , 2002 .

[60]  R. Ramlau,et al.  A gradient-based method for atmospheric tomography , 2016 .

[61]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[62]  Simone Esposito,et al.  Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. , 2006, Optics express.

[63]  Matthias Rosensteiner,et al.  Wavefront reconstruction for extremely large telescopes via CuRe with domain decomposition. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[64]  Pascal Jagourel,et al.  ATLAS: the E-ELT laser tomographic adaptive optics system , 2010, Astronomical Telescopes + Instrumentation.

[65]  M. Le Louarn,et al.  SCAO Simulation Results with a Pyramid Sensor on an ELT-like Telescope , 2010 .

[66]  Ronny Ramlau,et al.  Fast algorithm for wavefront reconstruction in XAO/SCAO with pyramid wavefront sensor , 2014, Astronomical Telescopes and Instrumentation.

[67]  Johnathan M. Bardsley,et al.  Wavefront Reconstruction Methods for Adaptive Optics Systems on Ground-Based Telescopes , 2008, SIAM J. Matrix Anal. Appl..

[68]  L. Landweber An iteration formula for Fredholm integral equations of the first kind , 1951 .

[69]  Simone Esposito,et al.  Fourier transform-wavefront reconstruction for the pyramid wavefront sensor , 2010 .

[70]  G. Rousset,et al.  On-sky tests of the CuReD and HWR fast wavefront reconstruction algorithms with CANARY , 2015 .