Current trends in nanobiosensor technology.

The development of tools and processes used to fabricate, measure, and image nanoscale objects has lead to a wide range of work devoted to producing sensors that interact with extremely small numbers (or an extremely small concentration) of analyte molecules. These advances are particularly exciting in the context of biosensing, where the demands for low concentration detection and high specificity are great. Nanoscale biosensors, or nanobiosensors, provide researchers with an unprecedented level of sensitivity, often to the single molecule level. The use of biomolecule-functionalized surfaces can dramatically boost the specificity of the detection system, but can also yield reproducibility problems and increased complexity. Several nanobiosensor architectures based on mechanical devices, optical resonators, functionalized nanoparticles, nanowires, nanotubes, and nanofibers have been demonstrated in the lab. As nanobiosensor technology becomes more refined and reliable, it is likely it will eventually make its way from the lab to the clinic, where future lab-on-a-chip devices incorporating an array of nanobiosensors could be used for rapid screening of a wide variety of analytes at low cost using small samples of patient material.

[1]  Ralph Weissleder,et al.  Sensitive NMR sensors detect antibodies to influenza. , 2008, Angewandte Chemie.

[2]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[3]  William H. Grover,et al.  Using buoyant mass to measure the growth of single cells , 2010, Nature Methods.

[4]  Rashid Bashir,et al.  Microresonator mass sensors for detection of Bacillus anthracis Sterne spores in air and water. , 2007, Biosensors & bioelectronics.

[5]  Itamar Willner,et al.  Electronic aptamer-based sensors. , 2007, Angewandte Chemie.

[6]  Ralph Weissleder,et al.  Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. , 2003, Journal of the American Chemical Society.

[7]  A. Star,et al.  Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors , 2007 .

[8]  Ralph Weissleder,et al.  Magnetic relaxation switches capable of sensing molecular interactions , 2002, Nature Biotechnology.

[9]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[10]  Juewen Liu,et al.  Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. , 2005, Angewandte Chemie.

[11]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[12]  Heinz Schmid,et al.  Continuous flow in open microfluidics using controlled evaporation. , 2005, Lab on a chip.

[13]  David Erickson,et al.  Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays. , 2010, Biosensors & bioelectronics.

[14]  M. Cima,et al.  Multiparameter magnetic relaxation switch assays. , 2007, Analytical chemistry.

[15]  N Scott Lynn,et al.  Passive microfluidic pumping using coupled capillary/evaporation effects. , 2009, Lab on a chip.

[16]  J. Dobson,et al.  Magnetic nanoparticles for gene and drug delivery , 2008, International journal of nanomedicine.

[17]  U. Kreibig,et al.  OPTICAL ABSORPTION OF SMALL METALLIC PARTICLES , 1985 .

[18]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[19]  Muhammad A. Alam,et al.  Performance limits of nanobiosensors , 2006 .

[20]  Hongjie Dai,et al.  Nanotube Growth and Characterization , 2001 .

[21]  George M Whitesides,et al.  FLASH: a rapid method for prototyping paper-based microfluidic devices. , 2008, Lab on a chip.

[22]  G. Whitesides,et al.  Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. , 2008, Analytical chemistry.

[23]  W. Milne,et al.  Self-assembled nanotube field-effect transistors for label-free protein biosensors , 2008 .

[24]  Keith Aubin,et al.  Prion protein detection using nanomechanical resonator arrays and secondary mass labeling. , 2008, Analytical chemistry.

[25]  Uwe Karst,et al.  Labeling strategies for bioassays , 2006, Analytical and bioanalytical chemistry.

[26]  Yiping Zhao,et al.  Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. , 2006, Nano letters.

[27]  Harold G. Craighead,et al.  Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography , 1997 .

[28]  Ralph Weissleder,et al.  DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. , 2002, Journal of the American Chemical Society.

[29]  Bansi D Malhotra,et al.  Prospects of conducting polymers in biosensors. , 2006, Analytica chimica acta.

[30]  Xiaogang Liu,et al.  One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. , 2008, Journal of the American Chemical Society.

[31]  Zhiqiang Gao,et al.  Silicon nanowire arrays for label-free detection of DNA. , 2007, Analytical chemistry.

[32]  Xiaoping P. Hu,et al.  Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent , 2004, JBIC Journal of Biological Inorganic Chemistry.

[33]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[34]  Zhu Chang,et al.  Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization , 2006 .

[35]  S. Aguirre,et al.  Paper-based bioassays using gold nanoparticle colorimetric probes. , 2008, Analytical chemistry.

[36]  S. Bhatia,et al.  Nanoparticle Self‐Assembly Directed by Antagonistic Kinase and Phosphatase Activities , 2007 .

[37]  N. Lewis,et al.  A chemically diverse conducting polymer-based "electronic nose". , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Larry A. Nagahara,et al.  Directed placement of suspended carbon nanotubes for nanometer-scale assembly , 2002 .

[39]  Andrew A Berlin,et al.  Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures. , 2005, Nano letters.

[40]  Muhammad A. Alam,et al.  Screening-limited response of nanobiosensors. , 2007, Nano letters.

[41]  A. Saah,et al.  Sensitivity and Specificity Reconsidered: The Meaning of These Terms in Analytical and Diagnostic Settings , 1997, Annals of Internal Medicine.

[42]  H. Craighead,et al.  Single cell detection with micromechanical oscillators , 2001 .

[43]  G. Grüner,et al.  Charge Transfer from Adsorbed Proteins , 2004 .

[44]  K. Ramanathan,et al.  Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. , 2005, Journal of the American Chemical Society.

[45]  H. Craighead,et al.  Optical excitation of nanoelectromechanical oscillators , 2005 .

[46]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[47]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[48]  Scott S. Verbridge,et al.  High quality factor resonance at room temperature with nanostrings under high tensile stress , 2006 .

[49]  Yi Lu,et al.  Smart “Turn‐on” Magnetic Resonance Contrast Agents Based on Aptamer‐Functionalized Superparamagnetic Iron Oxide Nanoparticles , 2007, Chembiochem : a European journal of chemical biology.

[50]  Zeev Rosenzweig,et al.  Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. , 2002, Analytical chemistry.

[51]  Alan M. Cassell,et al.  Directed Growth of Free-StandingSingle-Walled Carbon Nanotubes , 1999 .

[52]  Amit K. Gupta,et al.  Single virus particle mass detection using microresonators with nanoscale thickness , 2004 .

[53]  Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors , 1996 .

[54]  W. Grange,et al.  Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA , 2006, Nature nanotechnology.

[55]  Xudong Fan,et al.  Liquid-core optical ring-resonator sensors. , 2006, Optics letters.

[56]  S. Jayasena Aptamers: an emerging class of molecules that rival antibodies in diagnostics. , 1999, Clinical chemistry.

[57]  H. Beier,et al.  Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy. , 2008, Nano letters.

[58]  Anja Boisen,et al.  Cantilever Sensors: Nanomechanical Tools for Diagnostics , 2009 .

[59]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[60]  Harold G. Craighead,et al.  Detection of prostate specific antigen with nanomechanical resonators. , 2009, Lab on a chip.

[61]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Heon-Jin Choi,et al.  Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. , 2008, Nano letters.

[63]  J. Weiss,et al.  DNA probes and PCR for diagnosis of parasitic infections , 1995, Clinical microbiology reviews.

[64]  Thomas J. Morrow,et al.  Nanowire sensors for multiplexed detection of biomolecules. , 2008, Current opinion in chemical biology.

[65]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[66]  Mark E. Cooper,et al.  Label-free biosensors : techniques and applications , 2009 .

[67]  S. Arnold,et al.  Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism. , 2010, Optics express.

[68]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[69]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[70]  M. Roukes,et al.  Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals , 1996 .

[71]  Larisa Lvova,et al.  Chemical sensor array for multicomponent analysis of biological liquids , 1999 .

[72]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.

[73]  David Erickson,et al.  Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale , 2008, Microfluidics and nanofluidics.

[74]  S. Manalis,et al.  Toward attogram mass measurements in solution with suspended nanochannel resonators. , 2010, Nano letters.

[75]  Hakho Lee,et al.  Magnetic nanoparticle biosensors. , 2010, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[76]  Moon-Ho Jo,et al.  Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. , 2009, Biosensors & bioelectronics.

[77]  Erkang Wang,et al.  Review: Aptamers in microfluidic chips. , 2010, Analytica chimica acta.

[78]  Elizabeth A Jares-Erijman,et al.  Imaging molecular interactions in living cells by FRET microscopy. , 2006, Current opinion in chemical biology.

[79]  Kaiming Ye,et al.  Development of Immunosensors Using Carbon Nanotubes , 2008, Biotechnology progress.

[80]  H. Craighead,et al.  Micro- and nanomechanical sensors for environmental, chemical, and biological detection. , 2007, Lab on a chip.

[81]  M. Sepaniak,et al.  Cantilever transducers as a platform for chemical and biological sensors , 2004 .

[82]  Chad A Mirkin,et al.  Raman dye-labeled nanoparticle probes for proteins. , 2003, Journal of the American Chemical Society.

[83]  Scott S. Verbridge,et al.  Fabrication of a nanomechanical mass sensor containing a nanofluidic channel. , 2010, Nano letters.

[84]  M. Mascini,et al.  Analytical applications of aptamers. , 2005, Biosensors & bioelectronics.

[85]  P. Sheehan,et al.  Detection limits for nanoscale biosensors. , 2005, Nano letters.

[86]  N Balasubramanian,et al.  DNA sensing by silicon nanowire: charge layer distance dependence. , 2008, Nano letters.

[87]  D. Braun,et al.  Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities. , 2003, Biophysical journal.

[88]  Yi Xiao,et al.  Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. , 2004, Journal of the American Chemical Society.

[89]  Robert E Campbell,et al.  Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors , 2008, Nature Methods.

[90]  C. Di Natale,et al.  A contribution on some basic definitions of sensors properties , 2001, IEEE Sensors Journal.

[91]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[92]  Michael J Sailor,et al.  Nanoparticle self-assembly gated by logical proteolytic triggers. , 2007, Journal of the American Chemical Society.

[93]  N Balasubramanian,et al.  Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. , 2008, Biosensors & bioelectronics.

[94]  Anja Boisen,et al.  Design & fabrication of cantilever array biosensors , 2009 .

[95]  Hongying Zhu,et al.  Opto-fluidic micro-ring resonator for sensitive label-free viral detection. , 2008, The Analyst.

[96]  Chad A Mirkin,et al.  Colorimetric screening of DNA-binding molecules with gold nanoparticle probes. , 2006, Angewandte Chemie.

[97]  G. Whitesides,et al.  Three-dimensional microfluidic devices fabricated in layered paper and tape , 2008, Proceedings of the National Academy of Sciences.

[98]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[99]  H. Dai,et al.  Peptide-coated nanotube-based biosensor for the detection of disease-specific autoantibodies in human serum. , 2008, Biosensors & bioelectronics.

[100]  Ralph Weissleder,et al.  Peroxidase Substrate Nanosensors for MR Imaging , 2004 .

[101]  Hongying Zhu,et al.  Label-free quantitative DNA detection using the liquid core optical ring resonator. , 2008, Biosensors & bioelectronics.

[102]  Dhesingh Ravi Shankaran,et al.  Trends in interfacial design for surface plasmon resonance based immunoassays , 2007 .

[103]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[104]  Kyung-Jin Jang,et al.  Detection of proteins using a colorimetric bio-barcode assay , 2007, Nature Protocols.

[105]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[106]  Xudong Fan,et al.  Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides , 2006 .

[107]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[108]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[109]  K. Mosbach,et al.  A Biomimetic Sensor Based on a Molecularly Imprinted Polymer as a Recognition Element Combined with Fiber-Optic Detection , 1995 .

[110]  H. Postma,et al.  Atomic-scale mass sensing using carbon nanotube resonators. , 2008, Nano letters.

[111]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[112]  Harold G. Craighead,et al.  Virus detection using nanoelectromechanical devices , 2004 .

[113]  Robert Langer,et al.  Multi-reservoir device for detecting a soluble cancer biomarker. , 2007, Lab on a chip.

[114]  C. Mirkin,et al.  Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. , 2007, Nano letters.

[115]  Chao Li,et al.  Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. , 2005, Journal of the American Chemical Society.

[116]  Mosbach,et al.  Molecularly imprinted polymers for bioanalysis: chromatography, binding assays and biomimetic sensors. , 1996, Current opinion in biotechnology.

[117]  Jan Eijkel,et al.  Evaporation driven pumping for chromatography application. , 2002, Lab on a chip.

[118]  Charles M. Lieber,et al.  Nanowire-based biosensors. , 2006, Analytical chemistry.

[119]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[120]  James Hone,et al.  Controlled placement of individual carbon nanotubes. , 2005, Nano letters.

[121]  Robert Langer,et al.  Magnetic relaxation switch detection of human chorionic gonadotrophin. , 2007, Bioconjugate chemistry.

[122]  Kwang S. Kim,et al.  Quasi-continuous growth of ultralong carbon nanotube arrays. , 2005, Journal of the American Chemical Society.

[123]  Juewen Liu,et al.  Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes , 2006, Nature Protocols.

[124]  Ralph Weissleder,et al.  Use of Magnetic Nanoparticles as Nanosensors to Probe for Molecular Interactions , 2004, Chembiochem : a European journal of chemical biology.

[125]  Yi Lu,et al.  DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. , 2010, Nano letters.

[126]  H. Craighead,et al.  Mechanical resonant immunospecific biological detector , 2000 .

[127]  K. Mosbach,et al.  Molecularly imprinted polymers and their use in biomimetic sensors. , 2000, Chemical reviews.

[128]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[129]  D. Leckband,et al.  Development and characterization of an ELISA assay in PDMS microfluidic channels , 2001 .

[130]  Donhee Ham,et al.  Chip–NMR biosensor for detection and molecular analysis of cells , 2008, Nature Medicine.

[131]  Yoshimasa Yamamoto PCR in Diagnosis of Infection: Detection of Bacteria in Cerebrospinal Fluids , 2002, Clinical and Vaccine Immunology.

[132]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[133]  H. Lang,et al.  A label-free immunosensor array using single-chain antibody fragments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[134]  H. Craighead,et al.  Zero mode waveguides for single-molecule spectroscopy on lipid membranes. , 2006, Biophysical journal.

[135]  M. Bangar,et al.  Conducting polymer 1-dimensional nanostructures for FET sensors , 2010 .

[136]  Tuan Vo-Dinh,et al.  SERS chemical sensors and biosensors: new tools for environmental and biological analysis☆ , 1995 .

[137]  Tae Song Kim,et al.  Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. , 2005, Biosensors & bioelectronics.

[138]  Larry A. Nagahara,et al.  High-Yield Selective Placement of Carbon Nanotubes on Pre-Patterned Electrodes , 2002 .

[139]  Harold G. Craighead,et al.  Microfluidic integration of nanomechanical resonators for protein analysis in serum , 2010 .

[140]  H. Dai Controlling nanotube growth , 2000 .

[141]  K Mosbach,et al.  Mimics of the binding sites of opioid receptors obtained by molecular imprinting of enkephalin and morphine. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[142]  Yi Lu,et al.  Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. , 2004, Analytical chemistry.

[143]  P. Eklund,et al.  Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes , 1998 .

[144]  J. Youngblood,et al.  Optimization of silica silanization by 3-aminopropyltriethoxysilane. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[145]  Shaoyi Jiang,et al.  Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. , 2010, Analytical chemistry.

[146]  Andrew A Berlin,et al.  Composite organic-inorganic nanoparticles as Raman labels for tissue analysis. , 2007, Nano letters.

[147]  Ajay Agarwal,et al.  Label-free direct detection of MiRNAs with silicon nanowire biosensors. , 2009, Biosensors & bioelectronics.

[148]  H. Craighead,et al.  Enumeration of DNA molecules bound to a nanomechanical oscillator. , 2005, Nano letters.

[149]  Jeong-O Lee,et al.  Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. , 2005, Journal of the American Chemical Society.

[150]  C. Di Natale,et al.  Nonspecific sensor arrays ("electronic tongue") for chemical analysis of liquids (IUPAC Technical Report) , 2005 .

[151]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[152]  G. Whitesides,et al.  Diagnostics for the developing world: microfluidic paper-based analytical devices. , 2010, Analytical chemistry.

[153]  J E Heebner,et al.  Sensitive disk resonator photonic biosensor. , 2001, Applied optics.

[154]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[155]  X. Richard Zhang,et al.  Development of a biosensor based on laser-fabricatedpolymer microcantilevers , 2004 .

[156]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[157]  Juewen Liu,et al.  Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. , 2004, Journal of the American Chemical Society.

[158]  Koji Sode,et al.  Novel electrochemical sensor system for protein using the aptamers in sandwich manner. , 2005, Biosensors & bioelectronics.

[159]  Q. X. Jia,et al.  Ultralong single-wall carbon nanotubes , 2004, Nature materials.

[160]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[161]  Anja Boisen,et al.  Low-noise polymeric nanomechanical biosensors , 2006 .

[162]  Ashok Mulchandani,et al.  Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. , 2009, Analytical chemistry.

[163]  M. Roukes,et al.  Ultrasensitive nanoelectromechanical mass detection , 2004, cond-mat/0402528.

[164]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[165]  L M Lechuga,et al.  Highly sensitive polymer-based cantilever-sensors for DNA detection. , 2005, Ultramicroscopy.

[166]  E. Tu,et al.  Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[167]  Andrea K. Bryan,et al.  Measurement of mass, density, and volume during the cell cycle of yeast , 2009, Proceedings of the National Academy of Sciences.

[168]  M. Meyyappan,et al.  Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection , 2003 .

[169]  Pooi See Lee,et al.  DNA sensing by field-effect transistors based on networks of carbon nanotubes. , 2007, Journal of the American Chemical Society.

[170]  Joseph T. Hupp,et al.  Gold Nanoparticle-Based Sensing of “Spectroscopically Silent” Heavy Metal Ions , 2001 .

[171]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[172]  M. R. Freeman,et al.  Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation , 2007, Science.

[173]  Christiane Ziegler,et al.  Cantilever-based biosensors , 2004, Analytical and bioanalytical chemistry.

[174]  L. Sekaric,et al.  Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators , 1999 .

[175]  S. Arnold,et al.  Excitation of resonances of microspheres on an optical fiber. , 1995, Optics letters.

[176]  Li Wei,et al.  (n,m) Selectivity of single-walled carbon nanotubes by different carbon precursors on Co-Mo catalysts. , 2007, Journal of the American Chemical Society.

[177]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[178]  C. O’Sullivan Aptasensors – the future of biosensing? , 2002, Analytical and bioanalytical chemistry.

[179]  B. Knudsen,et al.  Raman Nanoparticle Probes for Antibody-based Protein Detection in Tissues , 2008, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[180]  Nick Harris,et al.  A highly sensitive microsystem based on nanomechanical biosensors for genomics applications , 2006 .

[181]  Jillian M. Buriak,et al.  Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si–C bonds , 1999 .