Room temperature lithium polymer batteries based on ionic liquids

Abstract In this manuscript are reported the results of an investigation performed on rechargeable, all-solid-state, solvent-free, Li/LiFePO 4 polymer batteries incorporating N -butyl- N -methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide, PYR 14 TFSI, ionic liquid (IL). The tests show clearly the beneficial effect due to the incorporation of ionic liquids on room temperature battery performance that, conversely, results extremely poor in IL-free lithium polymer batteries. The theoretical capacity is delivered at 30 °C whereas about 115 mA h g −1 are discharged at 20 °C with excellent capacity retention and high coulombic efficiency. At 40 °C large capacities (125 mA h g −1 ) are discharged even at medium rates (C/3). Impedance measurements revealed that the overall battery resistance is almost fully located (e.g., above 93%) at the lithium anode/polymer electrolyte interface, which plays a key role in determining the battery performance.

[1]  S. Passerini,et al.  Solvent-free, PYR1ATFSI ionic liquid-based ternary polymer electrolyte systems I. Electrochemical characterization , 2007 .

[2]  R. Caminiti,et al.  Crystallization kinetics of PEO-alkaline perchlorate solutions observed by energy dispersive x-ray diffraction , 1997 .

[3]  S. Passerini,et al.  Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids , 2009 .

[4]  W. Henderson,et al.  An Elegant Fix for Polymer Electrolytes , 2005 .

[5]  Michel Perrier,et al.  Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes , 1994 .

[6]  S. Passerini,et al.  Investigation on the Stability of the Lithium‐Polymer Electrolyte Interface , 2000 .

[7]  W. Henderson,et al.  Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40 °C , 2006 .

[8]  Maria Forsyth,et al.  Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries , 1999, Nature.

[9]  G. Feuillade,et al.  Ion-conductive macromolecular gels and membranes for solid lithium cells , 1975 .

[10]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[11]  S. Passerini,et al.  Solvent-free, PYR1ATFSI Ionic Liquids-based Ternary Polymer Electrolyte Systems. II. Battery Tests , 2008 .

[12]  W. Henderson,et al.  Recent developments in the ENEA lithium metal battery project , 2005 .

[13]  P. Bruce,et al.  Crystalline and Amorphous Phases in the Poly(ethylene oxide)−LiCF3SO3 System , 1999 .

[14]  S. Passerini,et al.  Characterization of PEO‐Based Composite Cathodes. I. Morphological, Thermal, Mechanical, and Electrical Properties , 2000 .

[15]  Bruno Scrosati,et al.  Challenge of portable power , 1995, Nature.

[16]  B. Scrosati,et al.  Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state Li/LiFePO4 polymer batteries , 2003 .

[17]  S. Passerini,et al.  Investigation on lithium–polymer electrolyte batteries , 2001 .

[18]  Joon-Ho Shin,et al.  PEO-Based Polymer Electrolytes with Ionic Liquids and Their Use in Lithium Metal-Polymer Electrolyte Batteries , 2005 .

[19]  W. Wieczorek,et al.  Modifications of crystalline structure of peo polymer electrolytes with ceramic additives , 1989 .

[20]  W. Henderson,et al.  PEO-LiN ( SO 2 CF 2 CF 3 ) 2 Polymer Electrolytes: I. XRD, DSC, and Ionic Conductivity Characterization , 2001 .

[21]  Bruno Scrosati,et al.  Modern batteries : an introduction to electrochemical power sources , 2003 .

[22]  R. Ishikawa,et al.  Development of 10 Wh class lithium secondary cells in the 'New Sunshine Program' , 1997 .

[23]  Martin Winter,et al.  UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids , 2010 .

[24]  B. Boukamp A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems , 1986 .

[25]  W. Henderson,et al.  Characterization of Solvent-Free Polymer Electrolytes Consisting of Ternary PEO – LiTFSI – PYR14 TFSI , 2006 .

[26]  P. Bruce,et al.  Crystal Structure of the Polymer Electrolyte Poly(ethylene oxide)3:LiCF3SO3 , 1993, Science.

[27]  B. Scrosati,et al.  Characterization of Nonstoichiometric Nickel Oxide Thin‐Film Electrodes , 1994 .

[28]  Bernard A. Boukamp,et al.  A package for impedance/admittance data analysis , 1986 .

[29]  B. Scrosati,et al.  Electrochemical Properties of Polyethylene Oxide ‐ Li [ ( CF 3 SO 2 ) 2 N ] ‐ Gamma ‐ LiAlO2 Composite Polymer Electrolytes , 1995 .

[30]  R. Marcilla,et al.  Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries , 2010 .

[31]  Joon-Ho Shin,et al.  Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes , 2003 .

[32]  G. Bishop,et al.  On-road vehicle emissions: regulations, costs, and benefits. , 1995, Science.

[33]  D. Macfarlane,et al.  Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases , 1999 .

[34]  S. Passerini,et al.  Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications , 2006 .