Geometric integration on spheres and some interesting applications

Geometric integration theory can be employed when numerically solving ODEs or PDEs with constraints. In this paper, we present several one-step algorithms of various orders for ODEs on a collection of spheres. To demonstrate the versatility of these algorithms, we present representative calculations for reduced free rigid body motion (a conservative ODE) and a discretization of micromagnetics (a dissipative PDE). We emphasize the role of isotropy in geometric integration and link numerical integration schemes to modern differential geometry through the use of partial connection forms; this theoretical framework generalizes moving frames and connections on principal bundles to manifolds with nonfree actions.

[1]  T. R. Koehler,et al.  Ab initio micromagnetic calculations for particles (invited) , 1990 .

[2]  H. Munthe-Kaas Runge-Kutta methods on Lie groups , 1998 .

[3]  E. Torre,et al.  Identification of stiff modes in micromagnetic problems , 1997 .

[4]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[5]  P. Asselin,et al.  On the field Lagrangians in micromagnetics , 1986 .

[6]  Jin-Fa Lee,et al.  Algebraic multigrid method for solving FEM matrix equations for 3D static problems , 1999 .

[7]  A. Aharoni,et al.  Magnetostatic energy calculations , 1991 .

[8]  Bernard Dieny,et al.  Magnetotransport properties of magnetically soft spin‐valve structures (invited) , 1991 .

[9]  Stiffness analysis for the micromagnetic standard problem No. 4 , 2001 .

[10]  Peter Monk,et al.  Accurate discretization of a non-linear micromagnetic problem , 2001 .

[11]  A. Veselov Integrable discrete-time systems and difference operators , 1988 .

[12]  Mitchell Luskin,et al.  Numerical optimization of the micromagnetics energy , 1993, Smart Structures.

[13]  J. C. Simo,et al.  Conserving algorithms for the dynamics of Hamiltonian systems on lie groups , 1994 .

[14]  R. D. Vogelaere,et al.  Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .

[15]  Anthony Arrott,et al.  Introduction to the theory of ferromagnetism , 1996 .

[16]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[17]  T. Schrefl,et al.  Numerical micromagnetics in hard magnetic and multilayer systems (invited) , 1996 .

[18]  A. Aharoni Critique on the numerical micromagnetics of nano-particles , 1999 .

[19]  E Weinan,et al.  A Gauss-Seidel projection method for micromagnetics simulations , 2001 .

[20]  Xiaobo Tan,et al.  Cayley transforms in micromagnetics , 2001 .

[21]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[22]  J. Oti,et al.  Numerical micromagnetic techniques and their applications to magnetic force microscopy calculations , 1993 .

[23]  Michael J. Donahue,et al.  Exchange energy representations in computational micromagnetics , 1997 .

[24]  A. Dragt,et al.  Normal form for mirror machine Hamiltonians , 1979 .

[25]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[26]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[27]  Krzysztof Kuczera,et al.  Multidimensional Conformational Free Energy Surface Exploration: Helical States of Alan and Aibn Peptides , 1997 .

[28]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[29]  A. Iraqi,et al.  Functionalization of poly(p-phenylenevinylene) polymers with pendant nitroxide groups , 1997 .

[30]  D. R. Fredkin,et al.  Dynamical micromagnetics by the finite element method , 1987 .

[31]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[32]  T. Gilbert A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field , 1955 .

[33]  I. Tsukerman Fast finite element solvers for problems with magnetic materials , 1993 .

[34]  Peter J. Olver,et al.  Geometric Integration Algorithms on Homogeneous Manifolds , 2002, Found. Comput. Math..

[35]  F. Alouges A New Algorithm For Computing Liquid Crystal Stable Configurations: The Harmonic Mapping Case , 1997 .

[36]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[37]  P. Olver,et al.  Moving Coframes: I. A Practical Algorithm , 1998 .

[38]  Michael J. Donahue,et al.  Behavior of μMAG standard problem No. 2 in the small particle limit , 2000 .

[39]  D. Lewis,et al.  A geometric integration algorithm with applications to micromagnetics , 2000 .

[40]  Werner Scholz,et al.  Micromagnetic simulation of thermally activated switching in fine particles , 2001 .

[41]  T. Schrefl,et al.  Micromagnetic modelling of nanocrystalline magnets and structures , 1999 .