Photometric flaring fraction of M dwarf stars from the SkyMapper Southern Survey

We present our search for flares from M dwarf stars in the SkyMapper Southern Survey DR1, which covers nearly the full Southern hemisphere with six-filter sequences that are repeatedly observed in the passbands uvgriz. This allows us to identify bona fide flares in single-epoch observations on time-scales of less than four minutes. Using a correlation-based outlier search algorithm we find 254 flare events in the amplitude range of Δu ∼ 0.1 to 5 mag. In agreement with previous work, we observe the flaring fraction of M dwarfs to increase from ∼30 to ∼1000 per million stars for spectral types M0 to M5. We also confirm the decrease in flare fraction with larger vertical distance from the Galactic plane which is expected from declining stellar activity with age. Based on precise distances from Gaia DR2, we find a steep decline in the flare fraction from the plane to 150 pc vertical distance and a significant flattening towards larger distances. We then reassess the strong type dependence in the flaring fraction with a volume-limited sample within a distance of 50 pc from the Sun: in this sample the trend disappears and we find instead a constant fraction of ∼1 650 per million stars for spectral types M1 to M5. Finally, large-amplitude flares with Δi > 1 mag are very rare with a fraction of ∼0.5 per million M dwarfs. Hence, we expect that M-dwarf flares will not confuse SkyMapper’s search for kilonovae from gravitational-wave events. proper references for those databases (or follow their guideline on citation).

[1]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[2]  Keivan G. Stassun,et al.  Stellar Flares from the First TESS Data Release: Exploring a New Sample of M Dwarfs , 2019, The Astronomical Journal.

[3]  C. Wolf,et al.  SkyMapper Southern Survey: Second data release (DR2) , 2019, Publications of the Astronomical Society of Australia.

[4]  Astrophysics,et al.  The Palomar Transient Factory Sky2Night programme , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  O. Absil,et al.  A discontinuity in theTeff–radius relation of M-dwarfs , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  S. Hawley,et al.  The Near-ultraviolet Continuum Radiation in the Impulsive Phase of HF/GF-type dMe Flares. I. Data , 2018, The Astrophysical Journal.

[7]  Keivan G. Stassun,et al.  HD 202772A b: A Transiting Hot Jupiter around a Bright, Mildly Evolved Star in a Visual Binary Discovered by TESS , 2018, The Astronomical Journal.

[8]  J. Prieto,et al.  The Largest M Dwarf Flares from ASAS-SN , 2018, The Astrophysical Journal.

[9]  L. Szabados,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[10]  S. Schmidt,et al.  K2 Ultracool Dwarfs Survey. IV. Monster Flares Observed on the Young Brown Dwarf CFHT-BD-Tau 4 , 2018, The Astrophysical Journal.

[11]  N. Mowlavi,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[12]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[13]  P. J. Richards,et al.  Gaia Data Release 2: Mapping the Milky Way disc kinematics , 2018 .

[14]  J. Haislip,et al.  The First Naked-eye Superflare Detected from Proxima Centauri , 2018, The Astrophysical Journal.

[15]  M. Soraisam,et al.  Multiwavelength approach to classifying transient events in the direction of M 31 , 2018, Astronomy & Astrophysics.

[16]  S. Schmidt,et al.  K2 Ultracool Dwarfs Survey. III. White Light Flares Are Ubiquitous in M6-L0 Dwarfs , 2018, 1803.07708.

[17]  D. Wilner,et al.  Detection of a Millimeter Flare from Proxima Centauri , 2018, 1802.08257.

[18]  Fang Yuan,et al.  SkyMapper Southern Survey: First Data Release (DR1) , 2018, Publications of the Astronomical Society of Australia.

[19]  D. A. Kann,et al.  iPTF Archival Search for Fast Optical Transients , 2017, 1712.00949.

[20]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[21]  C. Tao,et al.  Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes , 2017, Publications of the Astronomical Society of Australia.

[22]  B. J. Shappee,et al.  Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger , 2017, Science.

[23]  Heidelberg,et al.  ESTIMATING DISTANCES FROM PARALLAXES. III. DISTANCES OF TWO MILLION STARS IN THE Gaia DR1 CATALOGUE , 2016, 1609.07369.

[24]  J. Davenport THE KEPLER CATALOG OF STELLAR FLARES , 2016, 1607.03494.

[25]  J. Prieto,et al.  ASASSN-16ae: A POWERFUL WHITE-LIGHT FLARE ON AN EARLY-L DWARF , 2016, 1605.04313.

[26]  J. Hartman,et al.  PHOTOMETRIC STUDY ON STELLAR MAGNETIC ACTIVITY. I. FLARE VARIABILITY OF RED DWARF STARS IN THE OPEN CLUSTER M37 , 2015, 1510.01005.

[27]  C. Bailer-Jones,et al.  Estimating Distances from Parallaxes , 2015, 1507.02105.

[28]  Kenneth J. Slatten,et al.  THE SOLAR NEIGHBORHOOD. XXXV. DISTANCES TO 1404 M DWARF SYSTEMS WITHIN 25 PC IN THE SOUTHERN SKY , 2014, The Astronomical Journal.

[29]  H. Maehara,et al.  SUPERFLARE OCCURRENCE AND ENERGIES ON G-, K-, AND M-TYPE DWARFS , 2014, 1405.1453.

[30]  C. Babusiaux,et al.  Overview and stellar statistics of the expectedGaiaCatalogue using theGaiaObject Generator , 2014, Astronomy & Astrophysics.

[31]  J. Prieto,et al.  CHARACTERIZING A DRAMATIC ΔV ∼ −9 FLARE ON AN ULTRACOOL DWARF FOUND BY THE ASAS-SN SURVEY , 2013, 1310.4515.

[32]  E. Berger,et al.  A SEARCH FOR FAST OPTICAL TRANSIENTS IN THE Pan-STARRS1 MEDIUM-DEEP SURVEY: M-DWARF FLARES, ASTEROIDS, LIMITS ON EXTRAGALACTIC RATES, AND IMPLICATIONS FOR LSST , 2013, 1307.5324.

[33]  H. Maehara,et al.  SUPERFLARES ON SOLAR-TYPE STARS OBSERVED WITH KEPLER II. PHOTOMETRIC VARIABILITY OF SUPERFLARE-GENERATING STARS: A SIGNATURE OF STELLAR ROTATION AND STARSPOTS , 2013, 1304.7361.

[34]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[35]  J. Davenport,et al.  TIME-RESOLVED PROPERTIES AND GLOBAL TRENDS IN dMe FLARES FROM SIMULTANEOUS PHOTOMETRY AND SPECTRA , 2013, 1307.2099.

[36]  Takashi Nagao,et al.  Superflares on solar-type stars , 2012, Nature.

[37]  J. Davenport,et al.  MULTI-WAVELENGTH CHARACTERIZATION OF STELLAR FLARES ON LOW-MASS STARS USING SDSS AND 2MASS TIME-DOMAIN SURVEYS , 2012, 1202.1902.

[38]  E. Slezak,et al.  Gaia Universe model snapshot - A statistical analysis of the expected contents of the Gaia catalogue , 2012, 1202.0132.

[39]  Michael S. Bessell,et al.  Spectrophotometric Libraries, Revised Photonic Passbands, and Zero Points for UBVRI, Hipparcos, and Tycho Photometry , 2011, 1112.2698.

[40]  S. Redfield,et al.  The Interstellar Medium Surrounding the Sun , 2011 .

[41]  Gabe Bloxham,et al.  SkyMapper Filter Set: Design and Fabrication of Large-Scale Optical Filters , 2011, 1106.1475.

[42]  Saurav Dhital,et al.  THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 SPECTROSCOPIC M DWARF CATALOG. I. DATA , 2011, 1101.1082.

[43]  L. Walkowicz,et al.  WHITE-LIGHT FLARES ON COOL STARS IN THE KEPLER QUARTER 1 DATA , 2010, 1008.0853.

[44]  K. Covey,et al.  The M4 Transition: Toward a comprehensive understanding of the transition into the fully convective regime , 2010, 1012.2580.

[45]  Andrew A. West,et al.  M DWARF FLARES FROM TIME-RESOLVED SLOAN DIGITAL SKY SURVEY SPECTRA , 2010 .

[46]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[47]  J. Bochanski,et al.  M DWARFS IN SLOAN DIGITAL SKY SURVEY STRIPE 82: PHOTOMETRIC LIGHT CURVES AND FLARE RATE ANALYSIS , 2009, 0906.2030.

[48]  S. Hawley,et al.  M Dwarf Flares from Time‐Resolved SDSS Spectra , 2009, 1009.1158.

[49]  J. Bochanski,et al.  CONSTRAINING THE AGE–ACTIVITY RELATION FOR COOL STARS: THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 5 LOW-MASS STAR SPECTROSCOPIC SAMPLE , 2007, 0712.1590.

[50]  Andrew A. West,et al.  Low-Mass Dwarf Template Spectra from the Sloan Digital Sky Survey , 2006, astro-ph/0610639.

[51]  J. Bochanski,et al.  Using the Galactic Dynamics of M7 Dwarfs to Infer the Evolution of Their Magnetic Activity , 2006, astro-ph/0609001.

[52]  A. Rau,et al.  The Nature of the Deep Lens Survey Fast Transients , 2006, astro-ph/0604343.

[53]  S. Hawley,et al.  Radiative Hydrodynamic Models of Optical and Ultraviolet Emission from M Dwarf Flares , 2006, astro-ph/0603195.

[54]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[55]  Alejandro Clocchiatti,et al.  The Deep Lens Survey Transient Search. I. Short Timescale and Astrometric Variability , 2004 .

[56]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[57]  S. Hawley,et al.  Multiwavelength Observations of Flares on AD Leonis , 2003 .

[58]  John E. Gizis,et al.  Brown Dwarfs and the TW Hydrae Association , 2002, astro-ph/0204342.

[59]  L. Cram,et al.  Publications of the Astronomical Society of Australia , 2002 .

[60]  J. Gizis A pr 2 00 2 Brown Dwarfs and the TW Hya Association , 2002 .

[61]  L. Wasserman,et al.  Controlling the False-Discovery Rate in Astrophysical Data Analysis , 2001, astro-ph/0107034.

[62]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[63]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[64]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[65]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[66]  S. Hawley,et al.  X-ray-heated models of stellar flare atmospheres - Theory and comparison with observations , 1992 .