Power-Spectrum Estimation

Spectral estimation often forms the basis for distinguishing and tracking signals of interest in the presence of noise and for extracting information from the received data. The application of Fourier techniques to the problem of estimating the properties of sinusoids in noise dates back as far as Shuster (1898), Fourier spectrum analysis is the basis for almost all spectral-estimation equipment, * including the common sweeping-filter spectrum analyzer, the parallel filter bank, the fast Fourier transform (FFT), the delay-line time compressor (Deltic), and the compressive spectrum analyzer (Microscan). A problem with Fourier spectrum analysis, however, is that it makes implicit assumptions concerning data outside the observation interval and, frequently, these physically unrealistic assumptions reduce the quality of the estimates. During the past decade, two radically different non-Fourier spectral-estimation techniques have emerged — maximum-entropy spectrum analysis (Burg, 1967) and spectral decomposition (Pisarenko, 1973). These techniques offer alternative and often more realistic data models which, in many cases, lead to better estimation performance. This paper reviews the Fourier methods and compares them to the new techniques in terms of signal models assumed by the three basic methods and their ability to distinguish multiple sinusoids in noise.

[1]  Stephen J. Wernecke,et al.  Maximum Entropy Image Reconstruction , 1977, IEEE Transactions on Computers.

[2]  N. Andersen On the calculation of filter coefficients for maximum entropy spectral analysis , 1974 .

[3]  B. Widrow,et al.  Adaptive noise cancelling: Principles and applications , 1975 .

[4]  W. Gersch Spectral analysis of EEG's by autoregressive decomposition of time series , 1970 .

[5]  J. W. Tukey,et al.  The Measurement of Power Spectra from the Point of View of Communications Engineering , 1958 .

[6]  T. Ulrich,et al.  Maximum entropy spectral analy-sis and autoregressive decomposition , 1975 .

[7]  Arthur Schuster,et al.  On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena , 1898 .

[8]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[9]  R. Lacoss DATA ADAPTIVE SPECTRAL ANALYSIS METHODS , 1971 .

[10]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[11]  Andrew J. Viterbi,et al.  Principles of coherent communication , 1966 .

[12]  B. Atal,et al.  Speech analysis and synthesis by linear prediction of the speech wave. , 1971, The Journal of the Acoustical Society of America.

[13]  M. Bartlett Periodogram analysis and continuous spectra. , 1950, Biometrika.

[14]  T. Ulrych,et al.  Maximum entropy power spectrum of truncated sinusoids , 1972 .

[15]  L. Griffiths Rapid measurement of digital instantaneous frequency , 1975 .