暂无分享,去创建一个
Michael I. Jordan | Ali Ghodsi | Ion Stoica | Joseph M. Hellerstein | Joseph Gonzalez | Peter Bailis | Michael J. Franklin | J. Hellerstein | Peter Bailis | M. Franklin | I. Stoica | Joseph E. Gonzalez | A. Ghodsi | Peter D. Bailis
[1] Carl Hewitt,et al. A Universal Modular ACTOR Formalism for Artificial Intelligence , 1973, IJCAI.
[2] Roger M. Needham,et al. On the duality of operating system structures , 1979, OPSR.
[3] Guy M. Lohman,et al. R* optimizer validation and performance evaluation for local queries , 1986, SIGMOD '86.
[4] Patrick E. O'Neil,et al. The Escrow transactional method , 1986, TODS.
[5] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[6] Leslie G. Valiant,et al. A bridging model for parallel computation , 1990, CACM.
[7] Patrick Valduriez,et al. Prototyping Bubba, A Highly Parallel Database System , 1990, IEEE Trans. Knowl. Data Eng..
[8] Goetz Graefe,et al. Encapsulation of parallelism in the Volcano query processing system , 1990, SIGMOD '90.
[9] Larry Rudolph,et al. Gang Scheduling Performance Benefits for Fine-Grain Synchronization , 1992, J. Parallel Distributed Comput..
[10] Anthony Skjellum,et al. Using MPI - portable parallel programming with the message-parsing interface , 1994 .
[11] D. Dolev,et al. Sharing memory robustly in message-passing systems , 1995, JACM.
[12] Jim Waldo,et al. A Note on Distributed Computing , 1996, Mobile Object Systems.
[13] Goetz Graefe. Iterators, Schedulers, and Distributed-memory Parallelism , 1996, Softw. Pract. Exp..
[14] J. Nocedal,et al. A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..
[15] Hamid Pirahesh,et al. Cost-based optimization for magic: algebra and implementation , 1996, SIGMOD '96.
[16] Veljko M. Milutinovic,et al. Distributed shared memory: concepts and systems , 1997, IEEE Parallel Distributed Technol. Syst. Appl..
[17] Joseph M. Hellerstein,et al. Eddies: continuously adaptive query processing , 2000, SIGMOD '00.
[18] David J. DeWitt,et al. Architecting a Network Query Engine for Producing Partial Results , 2000, WebDB.
[19] Donald Kossmann,et al. The state of the art in distributed query processing , 2000, CSUR.
[20] Amin Vahdat,et al. Efficient Numerical Error Bounding for Replicated Network Services , 2000, VLDB.
[21] Samuel Madden,et al. Fjording the stream: an architecture for queries over streaming sensor data , 2002, Proceedings 18th International Conference on Data Engineering.
[22] Jennifer Widom,et al. Approximate replication , 2003 .
[23] Gustavo Alonso,et al. Using Optimistic Atomic Broadcast in Transaction Processing Systems , 2003, IEEE Trans. Knowl. Data Eng..
[24] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[25] Marcos M. Campos,et al. SVM in Oracle Database 10g: Removing the Barriers to Widespread Adoption of Support Vector Machines , 2005, VLDB.
[26] Hector Garcia-Molina,et al. The demarcation protocol: A technique for maintaining constraints in distributed database systems , 1994, The VLDB Journal.
[27] Ion Stoica,et al. Implementing declarative overlays , 2005, SOSP '05.
[28] Carlos Ordonez,et al. Integrating K-means clustering with a relational DBMS using SQL , 2006, IEEE Transactions on Knowledge and Data Engineering.
[29] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[30] Rahul Gupta,et al. Creating probabilistic databases from information extraction models , 2006, VLDB.
[31] Atul Singh,et al. Using queries for distributed monitoring and forensics , 2006, EuroSys.
[32] P. Cortez,et al. A data mining approach to predict forest fires using meteorological data , 2007 .
[33] Yuan Yu,et al. Dryad: distributed data-parallel programs from sequential building blocks , 2007, EuroSys '07.
[34] Daisy Zhe Wang,et al. BayesStore: managing large, uncertain data repositories with probabilistic graphical models , 2008, Proc. VLDB Endow..
[35] Peter J. Haas,et al. MCDB: a monte carlo approach to managing uncertain data , 2008, SIGMOD Conference.
[36] Lise Getoor,et al. Exploiting shared correlations in probabilistic databases , 2008, Proc. VLDB Endow..
[37] Zachary G. Ives,et al. Sideways Information Passing for Push-Style Query Processing , 2008, 2008 IEEE 24th International Conference on Data Engineering.
[38] Roberto J. Bayardo,et al. PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce , 2009, Proc. VLDB Endow..
[39] Badrish Chandramouli,et al. On-the-fly Progress Detection in Iterative Stream Queries , 2009, Proc. VLDB Endow..
[40] Daisy Zhe Wang,et al. Querying probabilistic information extraction , 2010, Proc. VLDB Endow..
[41] Andrew McCallum,et al. Scalable probabilistic databases with factor graphs and MCMC , 2010, Proc. VLDB Endow..
[42] Alexander J. Smola,et al. An architecture for parallel topic models , 2010, Proc. VLDB Endow..
[43] Alexander J. Smola,et al. Parallelized Stochastic Gradient Descent , 2010, NIPS.
[44] Michael D. Ernst,et al. HaLoop , 2010, Proc. VLDB Endow..
[45] Carlos Ordonez,et al. Bayesian Classifiers Programmed in SQL , 2010, IEEE Transactions on Knowledge and Data Engineering.
[46] Chen Li,et al. Efficient parallel set-similarity joins using MapReduce , 2010, SIGMOD Conference.
[47] Stephen J. Wright,et al. Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.
[48] Michael I. Jordan,et al. Managing data transfers in computer clusters with orchestra , 2011, SIGCOMM.
[49] Eli Upfal,et al. The Case for Predictive Database Systems: Opportunities and Challenges , 2011, CIDR.
[50] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[51] John Langford,et al. Scaling up machine learning: parallel and distributed approaches , 2011, KDD '11 Tutorials.
[52] Shirish Tatikonda,et al. SystemML: Declarative machine learning on MapReduce , 2011, 2011 IEEE 27th International Conference on Data Engineering.
[53] Yoram Singer,et al. Pegasos: primal estimated sub-gradient solver for SVM , 2011, Math. Program..
[54] Min Wang,et al. Optimizing Statistical Information Extraction Programs over Evolving Text , 2012, 2012 IEEE 28th International Conference on Data Engineering.
[55] Marc'Aurelio Ranzato,et al. Large Scale Distributed Deep Networks , 2012, NIPS.
[56] Kun Li,et al. The MADlib Analytics Library or MAD Skills, the SQL , 2012, Proc. VLDB Endow..
[57] Carlos Guestrin,et al. Distributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud , 2012 .
[58] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[59] Martin J. Wainwright,et al. Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling , 2010, IEEE Transactions on Automatic Control.
[60] Daniel J. Abadi,et al. Calvin: fast distributed transactions for partitioned database systems , 2012, SIGMOD Conference.
[61] Chen Li,et al. Inside "Big Data management": ogres, onions, or parfaits? , 2012, EDBT '12.
[62] Christopher Ré,et al. Towards a unified architecture for in-RDBMS analytics , 2012, SIGMOD Conference.
[63] Tim Kraska,et al. MLbase: A Distributed Machine-learning System , 2013, CIDR.
[64] Seunghak Lee,et al. More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server , 2013, NIPS.
[65] Johannes Gehrke,et al. Asynchronous Large-Scale Graph Processing Made Easy , 2013, CIDR.
[66] Asuman E. Ozdaglar,et al. On the O(1=k) convergence of asynchronous distributed alternating Direction Method of Multipliers , 2013, 2013 IEEE Global Conference on Signal and Information Processing.
[67] Shai Shalev-Shwartz,et al. Accelerated Mini-Batch Stochastic Dual Coordinate Ascent , 2013, NIPS.
[68] Pascal Bianchi,et al. Asynchronous distributed optimization using a randomized alternating direction method of multipliers , 2013, 52nd IEEE Conference on Decision and Control.
[69] Chih-Jen Lin,et al. A fast parallel SGD for matrix factorization in shared memory systems , 2013, RecSys.
[70] Volker Markl,et al. Applying Stratosphere for Big Data Analytics , 2013, BTW.
[71] Christopher Ré,et al. Towards high-throughput gibbs sampling at scale: a study across storage managers , 2013, SIGMOD '13.
[72] M. Abadi,et al. Naiad: a timely dataflow system , 2013, SOSP.
[73] Yannis Sismanis,et al. Sparkler: supporting large-scale matrix factorization , 2013, EDBT '13.
[74] Kyuseok Shim,et al. MapReduce Algorithms for Big Data Analysis , 2013, DNIS.
[75] Herodotos Herodotou,et al. Massively Parallel Databases and MapReduce Systems , 2013, Found. Trends Databases.
[76] Tim Kraska,et al. MLI: An API for Distributed Machine Learning , 2013, 2013 IEEE 13th International Conference on Data Mining.
[77] Shivnath Babu,et al. Cumulon: optimizing statistical data analysis in the cloud , 2013, SIGMOD '13.
[78] Christopher Ré,et al. DimmWitted: A Study of Main-Memory Statistical Analytics , 2014, Proc. VLDB Endow..
[79] Alexander J. Smola,et al. Scaling Distributed Machine Learning with the Parameter Server , 2014, OSDI.
[80] James T. Kwok,et al. Asynchronous Distributed ADMM for Consensus Optimization , 2014, ICML.
[81] Trishul M. Chilimbi,et al. Project Adam: Building an Efficient and Scalable Deep Learning Training System , 2014, OSDI.
[82] Tim Kraska,et al. Tupleware: Redefining Modern Analytics , 2014, ArXiv.
[83] Stephen J. Wright,et al. An asynchronous parallel stochastic coordinate descent algorithm , 2013, J. Mach. Learn. Res..
[84] Christina Freytag,et al. Using Mpi Portable Parallel Programming With The Message Passing Interface , 2016 .
[85] Christopher Ré,et al. Materialization optimizations for feature selection workloads , 2014, SIGMOD Conference.