Residual‐based variational multiscale methods for laminar, transitional and turbulent variable‐density flow at low Mach number

In the present study, residual-based variational multiscale methods are developed for and applied to variable-density flow at low Mach number. In particular, two different formulations are considered in this study: a standard stabilized formulation featuring SUPG/PSG/grad-div terms and a complete residual-based variational multiscale formulation additionally containing cross- and Reynolds-stress terms as well as subgrid-scale velocity terms in the energy-conservation equation. The proposed methods are tested for various laminar flow test cases as well as a test case at laminar via transitional to turbulent flow stages. Stable and accurate results are obtained for all numerical examples. Substantial differences in the results between the two approaches do not become notable until a high temperature gradient is applied and the flow reaches a turbulent flow stage. The more pronounced influence of adding subgrid-scale velocity terms to the energy-conservation equation on the results than adding analogous terms to the momentum-conservation equation in this situation appears particularly noteworthy. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  David K. Gartling,et al.  A finite element method for low-speed compressible flows☆ , 2003 .

[2]  T. Hughes,et al.  Two classes of mixed finite element methods , 1988 .

[3]  Malte Braack,et al.  Stabilized finite elements for 3D reactive flows , 2006 .

[4]  E. Leriche,et al.  Direct numerical simulation of the flow in a lid-driven cubical cavity , 2000 .

[5]  Jochen Fröhlich,et al.  LARGE EDDY SIMULATION OF VARIABLE DENSITY TURBULENT AXISYMMETRIC JETS , 2008, Proceeding of Fifth International Symposium on Turbulence and Shear Flow Phenomena.

[6]  Roland Bouffanais,et al.  Large-eddy simulation of the flow in a lid-driven cubical cavity , 2007, 0709.0222.

[7]  Wolfgang A. Wall,et al.  Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow , 2010 .

[8]  M. D. Deshpande,et al.  FLUID MECHANICS IN THE DRIVEN CAVITY , 2000 .

[9]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[10]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[11]  Vincent Heuveline,et al.  On higher‐order mixed FEM for low Mach number flows: application to a natural convection benchmark problem , 2003 .

[12]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[13]  M. D. Deshpande,et al.  Kolmogorov scales in a driven cavity flow , 1998 .

[14]  Franck Nicoud,et al.  Conservative High-Order Finite-Difference Schemes for Low-Mach Number Flows , 2000 .

[15]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[16]  Wolfgang A. Wall,et al.  An algebraic variational multiscale-multigrid method for large-eddy simulation: generalized-α time integration, Fourier analysis and application to turbulent flow past a square-section cylinder , 2011 .

[17]  J. Koseff,et al.  A dynamic mixed subgrid‐scale model and its application to turbulent recirculating flows , 1993 .

[18]  H. Oertel,et al.  Three-dimensional thermal cellular convection in rectangular boxes , 1988, Journal of Fluid Mechanics.

[19]  R. Pletcher,et al.  On the large eddy simulation of a turbulent channel flow with significant heat transfer , 1996 .

[20]  Weiming Liu,et al.  An implicit finite element solution of thermal flows at low Mach number , 2008, J. Comput. Phys..

[21]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[22]  M. Kronbichler,et al.  An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow , 2010 .

[23]  Paul Lin,et al.  Performance of fully coupled domain decomposition preconditioners for finite element transport/reaction simulations , 2005 .

[24]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[25]  Tom De Mulder,et al.  The role of bulk viscosity in stabilized finite element formulations for incompressible flow: A review , 1998 .

[26]  Miltiadis V. Papalexandris,et al.  Time-accurate calculation of variable density flows with strong temperature gradients and combustion , 2006, J. Comput. Phys..

[27]  Thomas J. R. Hughes,et al.  Stabilized Methods for Compressible Flows , 2010, J. Sci. Comput..

[28]  Thomas J. R. Hughes,et al.  Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations , 2005 .

[29]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[30]  J. Koseff,et al.  Reynolds number and end‐wall effects on a lid‐driven cavity flow , 1989 .

[31]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[32]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[33]  Christophe Eric Corre,et al.  Numerical simulations of a transient injection flow at low Mach number regime , 2008 .

[34]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[35]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .

[36]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[37]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[38]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[39]  R. Codina Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .

[40]  Li Q. Tang,et al.  Temporal, spatial and thermal features of 3-D Rayleigh-Bénard convection by a least-squares finite element method , 1997 .

[41]  R. Codina,et al.  A stabilized finite element approximation of low speed thermally coupled flows , 2008 .

[42]  Heinz Pitsch,et al.  High order conservative finite difference scheme for variable density low Mach number turbulent flows , 2007, J. Comput. Phys..

[43]  P. Moin,et al.  Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion , 2004, Journal of Fluid Mechanics.