MicroRNA detection and target prediction: integration of computational and experimental approaches.

In recent years, microRNAs (miRNAs), a class of 19-25 nucleotides noncoding RNAs, have been shown to play a major role in gene regulation across a broad range of metazoans and are important for a diverse biological functions. These miRNAs are involved in the regulation of protein expression primarily by binding to one or more target sites on an mRNA transcript and causing cleavage or repression of translation. Computer-based approaches for miRNA gene identification and miRNA target prediction are being considered as indispensable in miRNA research. Similarly, effective experimental techniques validating in silico predictions are crucial to the testing and finetuning of computational algorithms. Iterative interactions between in silico and experimental methods are now playing a central role in the biology of miRNAs. In this review, we summarize the various computational methods for identification of miRNAs and their targets as well as the technologies that have been developed to validate the predictions.

[1]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[2]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[3]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  S. Eddy Hidden Markov models. , 1996, Current opinion in structural biology.

[5]  V. Ambros,et al.  The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. elegans and Is Regulated by the lin-4 RNA , 1997, Cell.

[6]  R. Overbeek,et al.  Searching for patterns in genomic data. , 1997, Trends in genetics : TIG.

[7]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[8]  F. Slack,et al.  The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. , 2000, Molecular cell.

[9]  D. Gautheret,et al.  Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. , 2001, Journal of molecular biology.

[10]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[11]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[12]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[13]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.

[14]  E. Moss,et al.  MicroRNAs: Something New Under the Sun , 2002, Current Biology.

[15]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[17]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[18]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[19]  David P. Bartel,et al.  MicroRNAs: At the Root of Plant Development?1 , 2003, Plant Physiology.

[20]  V. Ambros,et al.  Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation , 2004, Genome Biology.

[21]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[22]  Konstantin Khrapko,et al.  A microRNA array reveals extensive regulation of microRNAs during brain development. , 2003, RNA.

[23]  Jon D. McAuliffe,et al.  Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome , 2003, Science.

[24]  G. Rubin,et al.  Computational identification of Drosophila microRNA genes , 2003, Genome Biology.

[25]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[26]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[27]  G. Church,et al.  Computational and experimental identification of C. elegans microRNAs. , 2003, Molecular cell.

[28]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[29]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[30]  Joseph M. Dale,et al.  Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome , 2003, Science.

[31]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[32]  V. Ambros,et al.  MicroRNAs and Other Tiny Endogenous RNAs in C. elegans , 2003, Current Biology.

[33]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[34]  Neil R. Smalheiser,et al.  A population-based statistical approach identifies parameters characteristic of human microRNA-mRNA interactions , 2004, BMC Bioinformatics.

[35]  C. Perou,et al.  A custom microarray platform for analysis of microRNA gene expression , 2004, Nature Methods.

[36]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[37]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[38]  Ravi Jain,et al.  MicroRNA-143 Regulates Adipocyte Differentiation* , 2004, Journal of Biological Chemistry.

[39]  Pål Sætrom,et al.  Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming , 2004, Bioinform..

[40]  Ranit Aharonov,et al.  MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. , 2004, Genome research.

[41]  Nóra Varga,et al.  Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. , 2004, Nucleic acids research.

[42]  Terry Gaasterland,et al.  Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets , 2004, Genome Biology.

[43]  C. Burge,et al.  Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. , 2004, RNA.

[44]  Qian Liu,et al.  A high-throughput method to monitor the expression of microRNA precursors. , 2004, Nucleic acids research.

[45]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[46]  J. Cavaille,et al.  A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. , 2004, Genome research.

[47]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets. , 2004 .

[48]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[49]  Oliver Hobert,et al.  MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode , 2004, Nature.

[50]  Seongjoon Koo,et al.  Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. , 2004, Nucleic acids research.

[51]  Zissimos Mourelatos,et al.  Microarray-based, high-throughput gene expression profiling of microRNAs , 2004, Nature Methods.

[52]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[53]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[54]  Michael Zuker,et al.  MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression , 2004, Nature Genetics.

[55]  P. Macdonald,et al.  Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method , 2005, BMC Genomics.

[56]  Anton J. Enright,et al.  Identification of Virus-Encoded MicroRNAs , 2004, Science.

[57]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[58]  C. Croce,et al.  An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[59]  P. Rouzé,et al.  Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Quaid Morris,et al.  Probing microRNAs with microarrays: tissue specificity and functional inference. , 2004, RNA.

[61]  D. Bartel,et al.  Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. , 2004, Molecular cell.

[62]  Michael Famulok,et al.  Sequence-specific detection of MicroRNAs by signal-amplifying ribozymes. , 2004, Journal of the American Chemical Society.

[63]  Pasko Rakic,et al.  Microarray analysis of microRNA expression in the developing mammalian brain , 2004, Genome Biology.

[64]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[65]  Y. Li,et al.  Incorporating structure to predict microRNA targets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Xiao Li,et al.  Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana , 2005, Comput. Biol. Chem..

[67]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[68]  Giovanni De Micheli,et al.  Prediction of regulatory modules comprising microRNAs and target genes , 2005, ECCB/JBI.

[69]  Byoung-Tak Zhang,et al.  Human microRNA prediction through a probabilistic co-learning model of sequence and structure , 2005, Nucleic acids research.

[70]  Eugene Berezikov,et al.  Phylogenetic Shadowing and Computational Identification of Human microRNA Genes , 2005, Cell.

[71]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[72]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[73]  Mihaela Zavolan,et al.  Identification of Clustered Micrornas Using an Ab Initio Prediction Method , 2022 .

[74]  Byoung-Tak Zhang,et al.  miTarget: microRNA target gene prediction using a support vector machine , 2006, BMC Bioinformatics.

[75]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[76]  James M. Pipas,et al.  SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells , 2005, Nature.

[77]  Michel J. Weber New human and mouse microRNA genes found by homology search , 2004, The FEBS journal.

[78]  Olivier Elemento,et al.  Revealing Posttranscriptional Regulatory Elements Through Network-Level Conservation , 2005, PLoS Comput. Biol..

[79]  Hanah Margalit,et al.  Clustering and conservation patterns of human microRNAs , 2005, Nucleic acids research.

[80]  M. Kiriakidou,et al.  Detection of microRNAs and assays to monitor microRNA activities in vivo and in vitro. , 2005, Methods in molecular biology.

[81]  Yang Li,et al.  An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe , 2005, Nucleic acids research.

[82]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[83]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[84]  Karen S. Osmont,et al.  A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[85]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[86]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[87]  C. Sander,et al.  Identification of microRNAs of the herpesvirus family , 2005, Nature Methods.

[88]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[89]  Wigard P Kloosterman,et al.  In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes , 2005, Nature Methods.

[90]  H. Horvitz,et al.  MicroRNA Expression in Zebrafish Embryonic Development , 2005, Science.

[91]  D. Bartel,et al.  Antiquity of MicroRNAs and Their Targets in Land Plantsw⃞ , 2005, The Plant Cell Online.

[92]  Baohong Zhang,et al.  Identification and characterization of new plant microRNAs using EST analysis , 2005, Cell Research.

[93]  B. Harfe,et al.  MicroRNAs in vertebrate development. , 2005, Current opinion in genetics & development.

[94]  Jay Nelson,et al.  Identification and Characterization of Human Cytomegalovirus-Encoded MicroRNAs , 2005, Journal of Virology.

[95]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[96]  Ola Snøve,et al.  Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. , 2005, RNA.

[97]  Daniel Gautheret,et al.  Profile-based detection of microRNA precursors in animal genomes , 2005, Bioinform..

[98]  Yuanji Zhang,et al.  miRU: an automated plant miRNA target prediction server , 2005, Nucleic Acids Res..

[99]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[100]  V. Kim MicroRNA biogenesis: coordinated cropping and dicing , 2005, Nature Reviews Molecular Cell Biology.

[101]  R. Aharonov,et al.  Identification of hundreds of conserved and nonconserved human microRNAs , 2005, Nature Genetics.

[102]  A. Adai,et al.  Computational prediction of miRNAs in Arabidopsis thaliana. , 2005, Genome research.

[103]  Jørgen Kjems,et al.  A microRNA detection system based on padlock probes and rolling circle amplification. , 2006, RNA.

[104]  A. Hatzigeorgiou,et al.  TarBase: A comprehensive database of experimentally supported animal microRNA targets. , 2005, RNA.

[105]  Ron Y. Pinter,et al.  A High-Throughput Approach for Associating microRNAs with Their Activity Conditions , 2005, RECOMB.

[106]  Hsien-Da Huang,et al.  miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes , 2005, Nucleic Acids Res..

[107]  R. Eils,et al.  Argonaute—a database for gene regulation by mammalian microRNAs , 2005, BMC Bioinformatics.

[108]  D. Turner,et al.  Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[109]  Peter F. Stadler,et al.  Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data , 2006, ISMB.

[110]  Jian-Fu Chen,et al.  The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation , 2006, Nature Genetics.

[111]  Guanglin Li,et al.  Prediction and Identification of Herpes Simplex Virus 1-Encoded MicroRNAs , 2006, Journal of Virology.

[112]  C. Croce,et al.  MicroRNA-cancer connection: the beginning of a new tale. , 2006, Cancer research.

[113]  Shiping Fang,et al.  Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. , 2006, Journal of the American Chemical Society.

[114]  Wen-chang Lin,et al.  Bioinformatic discovery of microRNA precursors from human ESTs and introns , 2006, BMC Genomics.

[115]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[116]  Vladimir Benes,et al.  A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). , 2006, RNA.

[117]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[118]  Masaru Tomita,et al.  Computational analysis of microRNA targets in Caenorhabditis elegans. , 2006, Gene.

[119]  Louise C. Showe,et al.  Bioinformatics Original Paper Combining Multi-species Genomic Data for Microrna Identification Using a Naı¨ve Bayes Classifier , 2022 .

[120]  Eugene Berezikov,et al.  Cloning and expression of new microRNAs from zebrafish , 2006, Nucleic acids research.

[121]  K. Chaudhuri,et al.  An approach for the identification of microRNA with an application to Anopheles gambiae. , 2006, Acta biochimica Polonica.

[122]  Adam Grundhoff,et al.  A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. , 2006, RNA.

[123]  Byoung-Tak Zhang,et al.  ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs , 2006, Nucleic Acids Res..

[124]  F. Tang,et al.  MicroRNA expression profiling of single whole embryonic stem cells , 2006, Nucleic acids research.

[125]  Xiaowei Wang,et al.  Systematic identification of microRNA functions by combining target prediction and expression profiling , 2006, Nucleic acids research.

[126]  Ronald H. A. Plasterk,et al.  Mouse microRNA profiles determined with a new and sensitive cloning method , 2006, Nucleic acids research.

[127]  Stijn van Dongen,et al.  miRBase: microRNA sequences, targets and gene nomenclature , 2005, Nucleic Acids Res..

[128]  David Haussler,et al.  Identification and Classification of Conserved RNA Secondary Structures in the Human Genome , 2006, PLoS Comput. Biol..

[129]  R. Plasterk,et al.  RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. , 2005, RNA.

[130]  Michael E. Greenberg,et al.  A brain-specific microRNA regulates dendritic spine development , 2006, Nature.

[131]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[132]  Hong Jiang,et al.  A novel method to monitor the expression of microRNAs , 2006, Molecular biotechnology.

[133]  R. Ach,et al.  Direct and sensitive miRNA profiling from low-input total RNA. , 2006, RNA.