Automatic FPGA based implementation of a classification tree

We propose a method of automatic hardware implementation of a decision rule based on the Adaboost algorithm. We review the principles of the classification method and we evaluate its hardware implementation cost in term of FPGA’s slice, using different weak classifiers based on the general concept of hyperrectangle. We show how to combine the weak classifiers in order to find a good trade-off between classification performances and hardware implementation cost. We present results obtained using examples coming from UCI databases.

[1]  Jiri Matas,et al.  Support vector machines for face authentication , 2002, Image and Vision Computing.

[2]  P. Gorria,et al.  Architectures for a real time classification processor , 1994, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '94.

[3]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[4]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[5]  S. Salzberg A nearest hyperrectangle learning method , 2004, Machine Learning.

[6]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[7]  Patrick Gorria,et al.  Classification géométrique par polytopes de contraintes , 1991 .

[8]  Gerhard Tröster,et al.  High-Level Area and Performance Estimation of Hardware Building Blocks on FPGAs , 2000, FPL.

[9]  Miteran,et al.  4 - Classification géométrique par polytopes de contraintes. Performances et intégration , 1994 .

[10]  Scott Hauck,et al.  The roles of FPGAs in reprogrammable systems , 1998, Proc. IEEE.

[11]  Thomas G. Dietterich,et al.  An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms , 1995, Machine Learning.

[12]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[13]  Y. Taright,et al.  FPGA implementation of a multilayer perceptron neural network using VHDL , 1998, ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344).

[14]  Jiri Matas,et al.  Support vector machines for face authentication , 2002, Image Vis. Comput..

[15]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[17]  Bernhard Schölkopf,et al.  Support Vector methods in learning and feature extraction , 1998 .

[18]  Fan Yang,et al.  Access control: adaptation and real-time implantation of a face recognition method , 2001 .

[19]  Demessie Girma,et al.  Artificial Neural Network Implementation on a Fine-Grained FPGA , 1994, FPL.